bullet Sensors & Transducers Journal

    (ISSN: 2306-8515, e-ISSN 1726-5479)


2013 Global Impact Factor


2008 e-Impact Factor

25 Top Downloaded Articles

Best Selling Articles 2012

Journal Subscription

Editorial Calendar

Submit an Article

Editorial Board

Current Issue

S&T journal's cover

Sensors & Transducers Journal 2011

Sensors & Transducers Journal 2010

Sensors & Transducers Journal 2009

Sensors & Transducers Journal 2008

Sensors & Transducers Journal 2007

2000-2002 S&T e-Digest Contents

2003 S&T e-Digest Contents

2004 S&T e-Digest Contents

2005 S&T e-Digest Contents

2006 S&T e-Digest Contents


Best Articles 2011




Vol. 193, Issue 10, October 2015, pp. 154-160




The Use of Gas-Sensor Arrays in the Detection of Bole and Root Decays in Living Trees:
Development of a New Non-invasive Method of Sampling and Analysis

1 Manuela BAIETTO, 1 Sofia AQUARO, 2 A. Dan WILSON, 3 Letizia POZZI, 1 Daniele BASSI

1 Dipartimento di Scienze Agrarie e Ambientali (DISAA), Universitá degli Studi di Milano, via Giovanni Celoria 2, 20133 Milano, Italy
2 Forest Insect and Disease Research, USDA Forest Service, Southern Hardwoods Laboratory, 432 Stoneville Road, Stoneville, MS 38776, USA
3 Demetra Societá Cooperativa Sociale ONLUS, Via Visconta 75, 20842 Besana in Brianza, Italy
1 Tel.: +39025031656, fax: +390250316553

E-mail: manuela.baietto@unimi.it


Received: 31 August 2015 /Accepted: 5 October 2015 /Published: 30 October 2015

Digital Sensors and Sensor Sysstems


Abstract: Wood rot is a serious fungal disease of trees. Wood decay fungi penetrate and gain entry into trees through pruning cuts or open wounds using extracellular digestive enzymes to attack all components of the cell wall, leading to the destruction of sapwood which compromises wood strength and stability. On living trees, it is often difficult to diagnose wood rot disease, particularly during extreme weather conditions when trees can fail, causing tree parts to fall onto people and property. Today, tree stability evaluation and inner decay detection are performed visually and by the use of commercial instruments and methods that are often invasive, time-consuming and sometimes inadequate for use within the urban environment. Moreover, most conventional instruments do not provide an adequate evaluation of decay that occurs in the root system. A long-term research project, initiated in 2004, was aimed at developing a novel approach for diagnosing inner tree decays by detecting differences in volatile organic compounds (VOCs) released by wood decay fungi and wood from healthy and decayed trees. Different commercial electronic noses (ENs) were tested under laboratory conditions and directly in the field, on healthy and artificially-inoculated stem wood chips, and root fragments. The first stage of the research was focused on testing different commercially available electronic noses (e-noses) for the capabilities of discriminating between different strains and species of wood decay fungi as well as sapwood belonging to different tree species. In the second stage, sapwood of different tree species was artificially inoculated with decay fungi to test the diagnostic ability of the e-noses to detect differences in aroma bouquets emitted by healthy and inoculated woods. Root fragments were then inoculated with specific root decaying fungi and incubated under different types of soils to assess whether soil odors could influence the ability of the e-nose to discriminate between non-inoculated and diseased root fragments. For the final stage, soil air was evaluated for the presence of VOCs released by root-decaying fungi on diseased standing trees cultivated in the urban environment.


Keywords: Electronic nose, Decay detection, Urban forestry, VOCs, Tree.


Acrobat reader logo Click <here> or title of paper to download the full pages article in pdf format



Subscribe the full-page Sensors & Transducers journal in print (paper) or pdf formats

(shipping cost by standard mail for paper version is included)

(25 % discount for IFSA Members)




Alternatively we accept a money transfer to our bank account. Please contact for details: sales@sensorsportal.com



Download <here> the Library Journal Recommendation Form



Read more about Chemical Sensors






1999 - 2015 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S.L. All Rights Reserved.

Home - News - Links - Archives - Tools - Voltage-to-Frequency Converters - Standardization - Patents - Marketplace - Projects - Wish List - e-Shop - Sensor Jobs - Membership - Videos - Publishing - Site Map - Subscribe - Search

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Submit Press Release - Submit White Paper - Testimonies - Twitter - Facebook - LinkedIn