Kinematics and Application of a Hybrid Industrial Robot – Delta-RST

1 Ning Liu, 2 Junjun Wu
1 College of Information Science and Technology, Jinan University, 510632, China
2 Department of Software, Guangdong Food and Drug Vocational College, 510520, China
1 Tel.: 020-85220483, fax: 020-85220483
2 E-mail: junjun-wu@hotmail.com

Received: 9 April 2014 / Accepted: 28 April 2014 / Published: 30 April 2014

Abstract: Serial robots and parallel robots have their own pros and cons. While hybrid robots consisting of both of them are possible and expected to retain their merits and minimize the disadvantages. The Delta-RST presented here is such a hybrid robot built up by integrating a 3-DoFs traditional Delta parallel structure and a 3-DoFs RST robotic wrist. In this paper, we focus on its kinematics analysis and its applications in industry. Firstly, the robotic system of the Delta-RST will be described briefly. Then the complete and systemic kinematics of this kind of robot will be presented in detail, followed by simulations and applications to demonstrate the correctness of the analysis, as well as the effectiveness of the developed robotic system. The closed-form kinematic analysis results are universal for similar hybrid robots constructing with the Delta parallel mechanism and serial chains. Copyright © 2014 IFSA Publishing, S. L.

Keywords: Hybrid robots, Industrial robots, Kinematics analysis, Control and application.

1. Introduction

In general, most currently-existing industrial robots designed are either built up of serial or parallel kinematic chains [1]. Serial robots consist of a series of active joints connecting the base to the end effector, while parallel robots are composed of a set of parallel chains (legs) with active and passive joints. Due to their open-loop and cantilever-type kinematic configuration, serial robots feature large workspaces and high dexterity but suffer from lack of stiffness and from relatively large positioning errors. On the other hand, as each independent leg forming a closed loop and connecting the base and the moving platform, parallel robots are able to achieve high stiffness and high force-to-weight ratio. However, parallel robots are known for a restricted workspace and low dexterity. In a word, serial robots and parallel robots have their own advantages and disadvantages.

A general manipulating task in industry can be divided into a position sub-task (position mechanism) and an orientation sub-task (orientation mechanism) [2], respectively. The position mechanism controls the position whereas the orientation mechanism manipulates the orientation of the end effector. It is natural to combine the serial and parallel chains together to obtain a hybrid industrial robot, so as to retain the merits of serial configurations, i.e. large workspace and high dexterity, and parallel structures, i.e. high stiffness and high force-to-weight ratio, while their disadvantages are minimized. A simple way to do this is to utilize a parallel mechanism to position the end-effector and connect serial joints to adjust the orientation, and vice versa.

Owing to the above observation, hybrid robot manipulators have attracted more and more attention.
in the field of robotics, although comparatively little literature on these robots is available currently. Some researches have dealt with the design of hybrid robots [3], resulting in novel but well-known robots like Tricept [4], TriVariant [5] and Exechon [6]. These three robots could be treated as serial combination (connection) of parallel and serial mechanisms both with few degrees of freedom. They have found various commercial applications such as high-speed milling, welding and component assembling in an aeronautical and automotive industry [7, 8]. In addition, lots of researches have focused on the analysis and modeling of several hybrid robots [9-13]. Literatures [10] and [11] investigated the kinematics and dynamics of a type of hybrid robots constructed by serially connected non-redundant parallel modules, respectively; while [12] and [13] aimed to propose a universal velocity-based model for the serial connection type (e.g. parallel-parallel, parallel-serial and serial-parallel) of hybrid robots, which certainly results in comparatively low efficiency and high complexity.

Since invented by Clavel in 1980s [14], the Delta parallel mechanism has been successfully and widely used in many fields [15] like rapid picking and packaging, thanks to its outstanding features including light-structure, high-speed, high-accuracy and simple-control. Researches on the Delta parallel mechanism include almost all aspects [16-18]. However, as a translational parallel manipulator, its application is limited because of lacking capability to change the orientation of the manipulated object. As a potential solution, Delta with orientation is considered as one of the tendencies [19], resulting in commercial robots like FANUC M-1iA/M-3iA serials [20] and ABB IRB 340/360 FlexPicker [21]. However, to the best of our knowledge, there is not complete and systemic kinematic analysis reported for this class of robots in the literatures.

In this paper, we present the closed-form kinematics solutions for a parallel-serial hybrid robot – the Delta-RST. To some extents, the Delta-RST may be regarded as a hybrid robot built up through connecting a Delta parallel structure with a serial robotic wrist. However, to completely analyze its kinematics and dynamics, the Delta-RST robot should be treated as a whole to obtain closed-form relationship between the base and the end-effector, which is critical and fundamental for further researches, such as workspace analysis, dimensional synthesis and layout optimization, and so on. The presented analysis and methods are able to be applied to similar robots with Delta parallel structure and serial chain fixed to the moving platform.

The rest of this paper is organized as follows. Section 2 describes the Delta-RST robotic system. Section 3 presents the complete kinematics analysis of Delta-RST-like robots. Experiments and applications are provided in Section 4, followed by a conclusion in Section 5.

2. Robotic System

To improve its dexterity to satisfy more industrial applications’ demands, the RST robotic wrist is integrated to the moving platform of the Delta parallel mechanism in our group, as shown in Fig. 1.
The RST robotic wrist can be driven through three motors mounted on the fixed platform of the Delta mechanism and three corresponding axes with universal couplings. An alternative is to configure each driver with its corresponding axis on the moving platform, respectively. Surely, the former one may achieve high-speed and fast-response since the inertia of the moving part is less, while the latter option is enlisted to simple structure and control.

Using the Kutzbach-Grubler formula [22], it is convenient to obtain the degrees of freedom from given joint angles to the DoFs of the i-th joint. As regards to Delta-RST, we have,

\[F = 6(n-g-1) + \sum_{i=1}^{n} f_i \]

where \(n \) refers to the total number of moving links, \(g \) to the number of joints, and \(f_i \) to the DoFs of the i-th joint.

Considering the geometry of the Delta robot, we have,

\[F = 6(20-24-1) + 3\times6 + 1\times18 = 6 \]

Note that the Delta parallel structure has no rotational degree of freedom. Therefore, Delta-RST is a hybrid robot with six degrees of freedom: three-DoFs Delta parallel mechanism to position the end-effector while three-DoFs serial RST robotic wrist responsible for controlling the orientation. Owing to the different roles played by the two sub-structures, it is possible to derive the kinematics and dynamics of them separately, and then combine them with the general knowledge of robotics, to obtain that of the entire hybrid robot.

3. Kinematic Analysis

In this Section, we analyze the kinematics of the Delta-RST robot using the vector method and the configuration matrix expressing approach. Without loss of generality, denote \((x, y, z, \alpha, \beta, \gamma)\) the configuration of the end-effector and \(\theta\) the rotational angle of each active joint.

3.1. Forward Kinematics

Forward kinematics is to compute the configuration of the end-effector \((x, y, z, \alpha, \beta, \gamma)\) from given joint angles \(\theta\). Setting up coordinate frames as shown in Fig. 1(b), the position of Point \(A_i\) \((i = 1, 2, 3)\) with respect to the base frame \(\{0\}\) can be expressed as,

\[u_i = \begin{bmatrix} l_0 \cos \gamma_i & l_0 \sin \gamma_i \end{bmatrix}^T \]

where \(\gamma_i = \frac{4i-1}{6} \pi \). Similarly, Point \(C_i\) relative to Frame \(\{3\}\) is \(u'_i = \begin{bmatrix} l_i \cos \gamma_i & l_i \sin \gamma_i \end{bmatrix}^T \).

Describing Point \(B_i\) with respect to Frame \(\{0\}\), we obtain,

\[v_i = \begin{bmatrix} l_0 + l_i \cos \theta_i & (l_0 + l_i \cos \theta_i) \sin \gamma_i & -l_i \sin \theta_i \end{bmatrix}^T \]

Supposing the origin of Frame \(\{3\}\) relative to Frame \(\{0\}\) is \(e = \begin{bmatrix} x_i & y_i & z_i \end{bmatrix}^T \), \(C_i\) can be expressed also respect to Frame \(\{0\}\) as \(w_i = e_i + u'_i \).

Consider the geometry of the Delta robot, we have the following constrain,

\[|w_i - w_j| = l_i \]

which can be further simplified as,

\[x_i^2 + y_i^2 + z_i^2 + a_i \cdot x_i + b_i \cdot y_i + c_i \cdot z_i + d_i = 0 \]

where \(a_i = -2(l_i \cos \theta_i + l_0 - l_i) \cos \gamma_i \), \(b_i = -2(l_i \cos \theta_i + l_0 - l_i) \sin \gamma_i \), \(c_i = 2l_i \sin \theta_i \), \(d_i = l_i^2 - l_0^2 + (l_0 - l_i)^2 + 2l_0 l_i \cos \theta_i - 2l_i^2 \cos \theta_i \).

Eq. (4) leads to two linear equations as,

\[
\begin{align*}
(a_i - a_j) \cdot x_i + (b_i - b_j) \cdot y_i + (c_i - c_j) \cdot z_i + (d_i - d_j) &= 0 \\
(a_i - a_j) \cdot x_i + (b_i - b_j) \cdot y_i + (c_i - c_j) \cdot z_i + (d_i - d_j) &= 0
\end{align*}
\]

As \(z_i \neq 0\) in practice, \(x_i\) and \(y_i\) can be represented by \(z_i\), resulting in,

\[
\begin{align*}
x_i &= m_i z_i + n_i \\
y_i &= m_i z_i + n_i
\end{align*}
\]

where

\[
\begin{align*}
m_i &= \frac{(c_i - c_j)(b_i - b_j) - (c_j - c_i)(b_i - b_j)}{(a_i - a_j)(b_i - b_j) - (a_i - a_j)(b_i - b_j)} \\
n_i &= \frac{(d_i - d_j)(b_i - b_j) - (d_i - d_j)(b_i - b_j)}{(a_i - a_j)(b_i - b_j) - (a_i - a_j)(b_i - b_j)}
\end{align*}
\]

Substituting Eq. (6) into Eq. (4), we get

\[a'z_i^2 + b' \cdot z_i + c' = 0 \]

where

\[
\begin{align*}
a' &= m_i^2 + m_j^2 + 1 \\
b' &= 2m_i n_i + 2m_j n_j + a_i \cdot m_i + a_j \cdot m_j \\
c' &= n_i^2 + n_j^2 + a_i \cdot n_i + a_j \cdot n_j + c_i \cdot z_i + d_i
\end{align*}
\]

Solving Eq. (7), we have

\[z_i = \frac{-b'\pm\sqrt{b'^2 - 4a'c'}}{2a'} \]
Then x_i and y_i can be computed with Eq. (6). Using the homogeneous transformation matrix, the configuration of the moving platform with respect to the base frame is,

$$
{^0T_3} = \begin{bmatrix}
I & \begin{bmatrix}
x_3 & y_3 & z_3
\end{bmatrix}^T \\
0 & 1
\end{bmatrix},
$$
(9)

where I is the 3×3 identity matrix.

As regards to the RST robotic wrist, its velocity can be computed with Eq. (6).

As regards to the RST robotic wrist, using the Z-Y-Z Euler angle notation (that is to say, rotate around the Z-axis with an angle of 45°, then rotate around the Y-axis, finally rotate around the Z-axis, referring to Fig. 1 (b)), the homogeneous transformation matrix can be computed as Eq. (2).

Therefore, the forward kinematics of the Delta-RST is

$$
{^0T_3} = \begin{bmatrix}
{^0T_3} & \begin{bmatrix}
x_3 & y_3 & z_3
\end{bmatrix}^T \\
0 & 1
\end{bmatrix},
$$

where $\theta'_i = \theta_i - 90^\circ$, $c_i = \cos \theta_i$, $s_i = \sin \theta_i$. Hereafter, similar simplified representations will be used.

As regards to the RST robotic wrist, depending on the RST robotic wrist. Hence, the forward kinematics of the Delta-RST can be expressed as

$$
J_{\theta_1} \dot{\theta}_i = G_{\theta} \cdot v_3,
$$

where $\dot{\theta}_i = \begin{bmatrix} \dot{\theta}_1, \dot{\theta}_2, \dot{\theta}_3 \end{bmatrix}^T$, $v_3 = \begin{bmatrix} x_3, y_3, z_3 \end{bmatrix}^T$.

The Jacobian matrix of the Delta-RST is

$$
J_{\theta} = \begin{bmatrix}
\begin{bmatrix}
J_{\theta_1} & J_{\theta_2} & J_{\theta_3}
\end{bmatrix}
\end{bmatrix}
$$

and

$$
J_{\theta_3} = \begin{bmatrix}
0 & 0 & J_{33}
\end{bmatrix},
$$

where $\theta_i = \begin{bmatrix} \theta_1, \theta_2, \theta_3 \end{bmatrix}^T$. The Jacobian matrix of the Delta-RST can be computed as

$$
J_{\theta} = \begin{bmatrix}
J_{\theta_1} & J_{\theta_2} & J_{\theta_3}
\end{bmatrix}
$$

where $\theta_i = \begin{bmatrix} \theta_1, \theta_2, \theta_3 \end{bmatrix}^T$, $v_3 = \begin{bmatrix} x_3, y_3, z_3 \end{bmatrix}^T$.

The Jacobian matrix of the Delta-RST is

$$
J_{\theta} = \begin{bmatrix}
\begin{bmatrix}
J_{\theta_1} & J_{\theta_2} & J_{\theta_3}
\end{bmatrix}
\end{bmatrix}
$$

and

$$
J_{\theta_3} = \begin{bmatrix}
0 & 0 & J_{33}
\end{bmatrix},
$$

where $\theta_i = \begin{bmatrix} \theta_1, \theta_2, \theta_3 \end{bmatrix}^T$.
where \(v_s \) is the 6×1 vector, \(\theta_s = [\dot{\theta}_4 \ \dot{\theta}_5 \ \dot{\theta}_6]^T \) and
\(J_s \) is the 6×3 matrix having the form,
\[
J_s = \begin{bmatrix}
M_s & M_s & M_s \\
\bar{S}_s & \bar{S}_s & \bar{S}_s
\end{bmatrix} = \begin{bmatrix}
M_s & S_s
\end{bmatrix},
\]
(19)
where \(M_j = S_j \times (P - R_j) \), \(S_j \ (j = 4, 5, 6) \) stands for the axial unit vector of the \(j \)-th joint, \(\bar{P} \) refers to the position of the end-effector with respect to Frame \(\{3\} \) (also the base frame of the RST robotic wrist), \(\bar{R}_j \) to the position vector of the \(j \)-th joint relative to its own coordinate. Specifically, they are
\[
\bar{S}_4 = \begin{bmatrix}
0 \\
1
\end{bmatrix}, \quad \bar{S}_5 = \begin{bmatrix}
c_4 s_5 \\
c_5
\end{bmatrix}, \quad \bar{S}_6 = \begin{bmatrix}
c_6 s_5 \\
c_5
\end{bmatrix},
\]
\[
\bar{R}_4 = \begin{bmatrix}
0 \\
-l_4
\end{bmatrix}, \quad \bar{R}_5 = \begin{bmatrix}
s_4 l_5 \\
-c_4 l_5
\end{bmatrix}, \quad \bar{R}_6 = \begin{bmatrix}
s_6 l_5 - c_6 s_6 l_6 \\
-c_6 l_5 - s_6 s_6 l_6
\end{bmatrix},
\]
\[
\bar{P} = \bar{R}_6 = \begin{bmatrix}
c_4 l_4 + s_4 s_5 l_6 \\
-s_4 l_4 + s_4 s_5 l_6
\end{bmatrix}, \quad \bar{M}_4 = \begin{bmatrix}
l_4 s_5 - c_4 s_6 l_6 \\
l_4 - c_4 s_6 l_6
\end{bmatrix}, \quad \bar{M}_5 = \begin{bmatrix}
0 \\
0
\end{bmatrix}.
\]

Hence we have
\[
M_s = \begin{bmatrix}
c_4 s_5 \\
l_4 s_5 - c_4 s_6 l_6 \\
0
\end{bmatrix}, \quad S_s = \begin{bmatrix}
c_4 s_5 \\
l_4 s_5 - c_4 s_6 l_6 \\
0
\end{bmatrix}.
\]

On the basis of the above analysis, building up the recurrence formula for the velocity of the RST robotic wrist from the perspective of the entire Delta-RST robot, we may obtain the following equations,
\[
\begin{align*}
&\dot{\omega}_s = \dot{\omega}_s + \dot{\theta}_s, \\
&\dot{v}_s = \dot{v}_s + \omega_s \times \vec{P}_s,
\end{align*}
\]
(20)
\[
\begin{align*}
&\dot{\omega}_s = \begin{bmatrix}
-c_4 s_5 \\
-s_4 c_5
\end{bmatrix}, \\
&\dot{v}_s = \begin{bmatrix}
l_4 c_5 \\
l_4 s_5
\end{bmatrix}.
\end{align*}
\]
(21)

As we know that
\[
\begin{align*}
&\dot{\omega}_s = \begin{bmatrix}
-c_4 s_5 \\
-s_4 c_5
\end{bmatrix}, \\
&\dot{v}_s = \begin{bmatrix}
l_4 c_5 \\
l_4 s_5
\end{bmatrix}.
\end{align*}
\]
(22)

Finally, we get
\[
\omega_s = \begin{bmatrix}
-c_4 s_5 \\
-s_4 c_5
\end{bmatrix}, \quad v_s = \begin{bmatrix}
l_4 c_5 \\
l_4 s_5
\end{bmatrix}.
\]
(23)

where
\[
\begin{align*}
&J_{11} = \begin{bmatrix}
c_4 c_5 c_6 - s_4 c_6 s_5 c_6 + c_4 s_5 s_6 - c_4 s_6 \\
-c_4 c_5 s_6 - s_4 c_6 s_5 c_6 + c_4 s_5 s_6
\end{bmatrix}, \\
&J_{12} = \begin{bmatrix}
l_4 c_5 c_6 - l_4 s_5 s_6 - l_4 c_6 \\
l_4 s_5 s_6 + l_4 c_6 s_5
\end{bmatrix}.
\end{align*}
\]
(24)

where
\[
\begin{align*}
&J_{11} = \begin{bmatrix}
c_4 c_5 c_6 - s_4 c_6 s_5 c_6 + c_4 s_5 s_6 - c_4 s_6 \\
-c_4 c_5 s_6 - s_4 c_6 s_5 c_6 + c_4 s_5 s_6
\end{bmatrix}, \\
&J_{12} = \begin{bmatrix}
l_4 c_5 c_6 - l_4 s_5 s_6 - l_4 c_6 \\
l_4 s_5 s_6 + l_4 c_6 s_5
\end{bmatrix}.
\end{align*}
\]
(25)
Therefore, the velocity of each active joint can be solved by computing the inverse of Jacobian matrix, as

\[
\dot{\theta} = J^{-1} \begin{bmatrix} v \\ \omega \end{bmatrix}
\] (26)

4. Experiments and Applications

4.1. Simulations

We have analyzed the kinematics of the entire Delta-RST robot in the previous section. In order to verify the developed robotic prototype and to validate the theoretical analysis of the closed-form kinematics of the Delta-RST robot, simulations and experiments are conducted in this section.

In the simulation, we utilize the Delta-RST robot to machine the slope edge of a heart-shaped part. Fig. 2 shows us some snapshots of the machining procedure.

![Fig. 2. Snapshots of manufacturing simulation with the Delta-RST robot.](image)

From the figure, we can see that the Delta parallel mechanism position the machining tool accurately during the manufacturing process. The orientation of the machining tool is also adjusted appropriately by the RST robotic wrist, to follow the slope edge of the part.

4.2. Experiments

The Delta parallel mechanism has been wildly used in the rapid picking procedure in industry. However, one of its drawbacks is that the orientation of the manipulated object cannot be changed by this robot, limited by its translational-only degrees of freedom.

This drawback can be easily overcome by the Delta-RST robot. Fig. 3 shows us serials of snapshots of an experiment, in which the Delta-RST robot is performing a rapid pick-and-place task. In this application, the robot needs to pick up some T-shaped parts put randomly in its workspace, and stack them up one by one with the right orientation on the truss. Obviously, this task could not be finished by a traditional Delta Robot.

![Fig. 3. Snapshots of performing the rapid pick-and-place task with the Delta-RST robot.](image)

To generate the machining trajectory, we have developed a CAD-model based off-line programming and planning algorithm for the Delta-RST robot. It firstly generates the trajectory of the machining tool (also the end-effector) in the Cartesian workspace according to the given CAD-model, then utilizes the kinematics presented in Section III to perform motion planning of the Delta-RST robot, and finally gets the trajectory of each active joint.
placing and stacking process, as well as being benefit to avoid collisions with the environment. After the robot reaches its right status, the vacuum gripper picks up the part. Then the Delta-RST robot handles this part to the target stack place, simultaneously adjusts its orientations during move, and finally puts down the manipulated part. Owing to the Delta parallel mechanism, the pick-and-place task can be conducted very fast.

Therefore, the Delta-RST robot has demonstrated its potential to the applications in industry. The proposed kinematic analysis is verified in both simulations and experiments with the Delta-RST robot.

5. Conclusions

Hybrid robots merge the advantages from serial mechanisms and parallel structures. Therefore, they have great potentials in the field of industry. The treated robot, Delta-RST, in this paper, is constructed by the combination of a 3-DoFs translational Delta parallel mechanism and a 3-DoFs serial RST robotic wrist. The Delta mechanism takes charge in positioning the end-effector, while the RST robotic wrist is responsible for orientating the end-effector. Hence it features not only high-speed and high-dexterity but also relatively big-workspace.

This paper has briefly introduced the mechanical system and the control system of the Delta-RST robot developed in our group. Closed-form kinematics solutions of the Delta-RST robot have been deduced and presented in detail, which is the fundament of higher-lever research. Simulations and experiments in the realistic industrial production are carried out to verify the effectiveness of the analysis and the robotic prototype. The methodology and the analysis results are universal to similar hybrid robots based on Delta Parallel structure and serial chains.

Recently, we are conducting workspace and manipulability analysis with the Delta-RST robot to study the task-oriented layout optimization problem in the industrial production line. In the near future, the dimensional synthesis will also be considered on the basis of specific manipulation task.

References