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Abstract: This paper presents a novel approach that can compensate errors resulting from the 
imperfections of mechanical structures and interface circuits for MEMS gyroscope systems. Different 
from most of existing researches on gyroscopes wherein the mechanical structure and interface circuit 
are either assumed to be ideal or optimized individually, this approach uses state estimation techniques 
to compensate all those errors and to obtain correct angular rates in real time. The mechanical structure 
errors discussed in this paper may come from structure designs and fabrication imperfections. The 
interface circuit errors include: mismatch of differential capacitors, parasitic capacitance, offset voltage 
of operation amplifiers, and circuit noise. Simulation results indicates that, with the presence of those 
errors and a signal-to-noise ratio around 20, the proposed method can measure time-varying angular 
rates with a bandwidth up to 30 Hz and a sensing accuracy of 2101 −×  rad/sec. Copyright © 2009 IFSA. 
 
Keywords: Interface circuit errors, State observers, Gyroscopes, Extended Kalman filter, Signal drifts 
 
 
 
1. Introduction 
 
MEMS vibratory gyroscopes have received lots of attention due to their small size, low cost, integrated 
circuit (IC) compatibility, and acceptable performance for lots of applications [1]. Conceptually, they act 
like a proof mass suspended in a rigid frame, as shown in Fig. 1. The mass is driven to vibrate along the 
“Drive” axis. If the frame rotates along z-axis, a Coriolis force is generated along the “Sense” axis. The 
angular rate can be obtained by measuring the motions of the proof mass along the “Sense” axis. To this 
aim, a MEMS vibratory gyroscope consists of three subsystems, as shown in Fig. 2. The “Mechanical 
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structure” converts the Coriolis force into displacements along designated directions. These 
displacements are then converted into another physical quantity for the ease of measurements (e.g., 
capacitance variations, resistance variation, etc.). The “Interface circuits” converts these measurements 
into voltage signals for subsequent signal processing. The “Control algorithm” processes these signals 
for the feedback control of the proof mass trajectory and for calculating the angular rates. The 
imperfections existed in each subsystem would significantly degrade the sensing accuracy of angular 
rates. Even worse, the trend towards miniaturization and better performance decreases the tolerance of 
imperfections. 
 
 

 
 

Fig. 1. A schematic of a vibratory gyroscope. 
 
 

 
 

Fig. 2. Block diagram of a vibratory MEMS gyroscope system. 
 
 

The mechanical structure imperfections mainly come from the structure designs and fabrication errors. 
For the structure design, it is difficult to design in single-axis resilient forces and small damping forces 
with MEMS fabrication processes. For the fabrication error, it is normal to have 10 %~20 % dimension 
variations and residual film stress from process steps such as lithography, etching, film deposition, and 
etc [2, 3]. All these errors cause the fabricated gyroscope dynamics (spring constants and damping 
coefficients) deviated from their designated values. Even worse, they induce cross-axis resilient force 
and cross-axis damping force, which lead to the serious “quadrature error” in gyroscope systems [2]. 
According to paper survey, solutions to mechanical structure imperfections include: advanced 
micromachining processes [4, 5], complicated mechanical structure designs [6-8], post-micromachining 
[9, 10], and etc. In a word, these imperfections are often minimized by expensive tooling processes. 
 
The reactance sensing scheme is attractive to MEMS devices because it can be fairly accurate. Besides, 
neither additional processing steps nor materials are required for the fabrication process. When adapting 
this sensing technique, charge amplifiers are often used as an interface circuit to convert capacitance 
variations into voltage signals [11]. The imperfections in this circuit includes: offset voltage of 
operational amplifiers, parasitic capacitances, circuit noises, bias ambiguity, and etc. [12]. Several 



Sensors & Transducers Journal, Vol. 6, Special Issue, August 2009, pp. 128-145 

 130

methods have been proposed to deal with those problems including: auto-zeroing, chopper stabilizations, 
switched capacitor, correlated double sampling, dynamic element matching, and etc. [11-16]. Those 
approaches are effective and have been widely used. However, they are complicated in circuit designs 
and may introduce other problems [11, 14-16]. For example, the “switched capacitor” method solved the 
offset voltage and parasitic capacitance problems, but generated extra noises during capacitor switching 
[11, 14]. In literatures, we found some papers using control algorithms to compensate imperfections in 
power IC circuits [17, 18]. However, we have not found one for charge amplifiers, except our 
preliminary work [19]. 
 
Currently, a vibratory gyroscope needs feedback controls to regulate its proof mass trajectory and to 
obtain angular rates. Among various control algorithms, the parameter estimation method is getting 
popular because it can achieve above tasks when the mechanical structures are imperfect [20-23]. This 
method improves the performance of MEMS gyroscopes without expensive tooling processes thus could 
be promising for the mass production. Unfortunately, in those reports, the interface circuits were all 
assumed to be ideal. 
 
To sum up, in most existing MEMS systems, the imperfections from mechanical structures and interface 
circuits were minimized physically and individually. The disadvantage of that is costly. Different from 
those approaches, this paper presents a control algorithm to compensate imperfections from both 
mechanical structures and interface circuits for vibratory gyroscopes, and to estimate angular rates in 
real item. The control algorithm was developed based on the state estimation techniques. The estimation 
properties and system stability are discussed in details in this paper. 
 
This paper is organized as follows: both the mechanical structure and interface circuit of a gyroscope 
system are modeled in details and shown in Section 2. The design of a state observer and a feedback 
controller that can compensate the effect of imperfections are presented in Section 3, followed by their 
stability analysis shown in Section 4. Several simulation results are shown in Section 5 to verify the 
analysis discussed previously. Finally, in Section 6 and 7, the paper is concluded and the results are 
briefly discussed. 
 
 
2. System Modeling 
 
2.1. Gyroscope Dynamics 
 
A linear vibratory gyroscope can be modeled as a spring-mass-damper system. Assuming that motions 
of the proof mass are constrained in the x-y plane and the rotation motions of the proof mass are ignored, 
the dynamics of a gyroscope can be modeled as follows: 
 
 

,2

2

xmuykxkydxdym

ymuykxkydxdxm

zyyyxyyyxy

zxxyxxxyxx

&&&&&

&&&&&

Ω−=++++

Ω+=++++
 (1)

 
where m  is the mass of the proof mass; xxd , yyd , xxk , yyk  are damping coefficients and spring 
constants along two axes x and y; zΩ  is the angular rate to be measured along z-axis; xyd  and xyk  are 
the cross-axis damping coefficient and spring constant; xu  and yu  are the control inputs along x and y 
axis. In most cases, the mass m  in (1) is assumed to be known and above equation is normalized to 
obtain (2). 
 
 

,2
2

xuykxkydxdy
yuykxkydxdx

zyyyxyyyxy
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where mdd xxxx /← , mdd xyxy /← , mdd yyyy /← , mkk xxxx /← , mkk xyxy /← , mkk yyyy /← , 
muu xx /← , muu yy /← . The mechanical structure imperfections would result in the existence of 

xyd , xyk , and uncertain values of all spring constants and damping coefficients. 
 
 
2.2. Capacitive Position Sensing 
 
Depending on the mechanism of its varying capacitance design, the capacitive position sensing can be 
divided into the comb drive scheme and parallel plate scheme [11]. Without losing generality, the comb 
drive scheme is used to illustrate the concepts here. 
 
As shown in Fig. 3, 1oC  and 2oC  are the capacitances when the proof mass is at its nominal position; 

1C∆  and 2C∆  are the capacitance variations induced by the displacement of the proof mass.  
A differential capacitor pair design normally requests that 1oC  equals to 2oC ; 1C∆  equals to 2C∆ . 
However, due to fabrication imperfections, these requirements may not be met. For example, if the 
nominal position is shifted by a distance d  from the neutral position of the structure, the above 
capacitances can be calculated as follows, 
 
 ( )

( )

,21

02

01

x
Z
WNCC

dx
Z
WNC

dx
Z
WNC

o

o

ε

ε

ε

=∆=∆

−=

+=

 (3)

 
where N  is the number of comb fingers; ε  is the permittivity of air; W and Z  are the height and gap of 
comb fingers; 0x  is the overlapped length of comb fingers when the proof mass is at its neutral position. 
 
 

 
 

Fig. 3. Comb drive design for the lateral position sensing: (a) the nominal position is shifted by a distance d;  
(b) capacitance variation due to a displacement x. 
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2.3. Interface Circuits 
 
As discussed previously, charge amplifiers are used to convert capacitance variations into voltage 
signals. And mostly because of the offset voltage of the operational amplifier, modulation techniques are 
often used to work with the amplifier [12, 14]. Here, the charge amplifier with/without modulation 
techniques are both analyzed for possible circuit errors. 
 
 
2.3.1. A Basic Charge Amplifier Circuit 
 
Differential capacitor pair, from the capacitive position sensing design, and a charge amplifier is shown 
in Fig. 4. PC  is the parasitic capacitance; osV  is the offset voltage of the operation amplifier; nV  is the 
circuit noise. 
 
 

 
 

Fig. 4. A schematic of a differential capacitance sensing and a charge amplifier. 
 
 

When the capacitance variation is induced, charges Q  are squeezed out of differential capacitors and 
flow into fR , fC , and PC . Assuming the differential capacitor pair is biased at constant voltages  

V±  and the voltage at the inverting terminal of the operational amplifier is 1V , the charges Q  can be 
calculated as follows: 
 
 ( ) ( ).1211 VVCVVCQ −−+−=  (4)
 
Assuming no input bias current for the operation amplifier (which is pretty much true for amplifiers 
made of MOS technology), the current flowing into fC ( Ci ) is obtained as: 
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fR  is often chosen to be large so that it would not destruct the charge sensing [11]; meaning that Ri  is 

negligible. Consequently, the output voltage oV  can be obtained as: 
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If the operational amplifier functions properly in this feedback configuration, 1V  equals to osV . By 
combining (6) and (3), the output voltage of the interface circuit is: 
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Since the values of d , PC , and osV  are unknown, the values of α  and β  are unknown. Furthermore, 
α  is an unknown constant; β  can either be an unknown constant or a drift depending on whether osV  is 
drifting. 
 
 
2.3.2. A Charge Amplifier with Modulation Techniques 
 
Fig. 5 shows a schematic of charge amplifier with modulation techniques. The output voltage of this 
circuit can be calculated as: 
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where 2nV  is the noise at around the modulation frequency and its standard deviation is smaller than that 
of nV ; ν  can be very small depending on the accompanied low-pass filter design. By combining (3) and 
(8), the output voltage can be rewritten as: 
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From (9) and (7), the output voltages of above two circuits are linearly proportional to the displacement 
of the proof mass. However, they are both deviated by biases or drifts. 
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Fig. 5. A schematic of a charge amplifier with modulation techniques. 
 

 
3. State Observer Design and Feedback Control 
 
To compensate both mechanical structure errors and circuit errors using state estimation techniques, the 
mechanical structure (2) and interface circuit (7) are modeled together as follows: 
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where Z  is the output vector of the system; X is the state vector of the system; xΦ  and yΦ  are two 
bias signals (drifts) at the circuit output. mN  models the noise, while sN  models the Brownian motions 
of the mechanical structures [24]. Note that xΦ , yΦ , zΩ , spring constants, and damping coefficients 
are all assumed to be constant for now. 
 
 
3.1. State Observer Design 
 
With the system equations shown in (10), a state observer can be constructed as follows: 
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where L  is the observer gain and can be chosen from various nonlinear observer algorithms. In this 
paper, the extended Kalman filtering (EKF) [25] is chosen mainly for its effectiveness in the noise 
reduction. 
 
When applying EKF to this system, equations (10) are converted into discrete-time difference equations 
( f ) first. And, the so-called “prediction equations” in the EKF can be calculated by the following steps: 
 
 ( )

( )( )

,/

ˆˆ

ˆ,ˆ

ˆ

1

1

kXXk

T
kkkk

T

kkkkk

kkk

XfA
APAP

XXXXEP

BUXkfX

=

−
+

−
+

∂∂=

=

⎥⎦
⎤

⎢⎣
⎡ −−=

+=

 (12)

 
where the subscript k  denotes the value obtained at the thk −  sampling time. The “correction 
equations” in the EKF are: 
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where kL  is the observer gain; kR  is the covariance matrix of the measurement noise. 
 
In the above derivations, all system parameters are assumed to be constant. However, a functional 
gyroscope needs to measure time-varying angular rates. Also, the bias voltage of amplifiers could be 
drifting. To cope with these problems, the fading memory technique [25] is adopted to work with the 
EKF. This is done by introducing a “forgetting factor, λ ” into the prediction equations. 
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The value of λ  can be obtained by assigning a number greater than one or by algorithms shown in [25]. 
Due to the limited space in this paper, the detail calculations of λ  are not shown. 
 
 
3.2. Feedback Control for Gyroscope System 
 
Since all system parameters and dynamics are estimated in real time, the estimated states can be used to 
implement feedback controls for gyroscopes. Among various controller designs, we choose the one 
which keeps the total energy transferred between two axes the same [26]. This control method is chosen 
because it enforces the feedback system to operate at the resonant frequency of the original system. Thus, 
the control input can be less. To implement this method, the control input is designed as follows: 
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Once the values of estimated states and parameters converge to correct values, the trajectory of proof 
mass can be described by the following equations: 
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In a special case where kkk yyxx == , the analytical solutions of (16) are: 
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where Ψ  is the vibration amplitude of the proof mass and is determined by initial conditions of the 
system. 
 
 
4. Stability Analysis 
 
The proposed feedback control method is essentially a task of stabilizing a nonlinear system, as shown in 
(10), using estimated system states. According to Vidyasagar [27], the “separation theorem,” which is 
often discussed for linear systems, can be applied to nonlinear systems to guarantee their local 
asymptotical stability. Therefore, the stability analysis can be divided into two tasks: one is a stabilizing 
controller design and the other is a stable observer design. According to (16) and (17), state values are all 
bounded. Therefore, it is a stabilizing controller design. 
 
The stability analysis of the observer design can be approached by two steps: the observability of the 
system; the state convergence of the EKF. For the EKF, it is known that its state convergence is not 
guaranteed [25]. In that case, one may use the iterative Kalman filter (IKF) to achieve both state 
convergence and noise reduction at the cost of complicated computations [28]. 
 
 
4.1. Observability Analysis 
 
The observability of a system can be examined by the rank of the observability matrix. The observability 
matrix of a nonlinear system [29] is obtained by the following: 
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For this feedback control gyroscope system, the observability matrix ( oW ) is calculated and has the 
following format: 
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Due to the diagonal form of oW , ssW  is the observability matrix for the gyroscope dynamics  
( x , x& , y , y& ) and bias signals ( xΦ , yΦ ); kdW  is for six system parameters and angular rate. After 
tedious derivations, the above ssW  and kdW  matrices can be greatly simplified to the following: 
 
 

.

002
002

002
002

002
002

002

,

0000
0000

001000
000010
000100
000001

)5()5()4()4()5(

)4()4()3()3()4(

)4()4()3()3()4(

)3()3()3(

)3()3()3(

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−−
−−−−
−−−−−
−−−−
−−−−−
−−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

=

yxyxy
xyxyx
yxyxy
xyxyx
yxyxy
xyxyx
yxyxy

W

kk
kk

W

kd

yyxy

xyxx

ss

&&&&

&&&&

&&&&&&&&

&&&&&&&&  (20)

 
For ssW , as long as 2

xyyyxx kkk ≠⋅ , its rank is six and thus the associated six states are globally 
observable. Similarly, it can be shown that the rank of kdW  is seven if the oscillation of the proof mass 
contain more than one frequency. According to (17), as long as 0≠xyk  or 0≠Ω z , there exists two 
frequencies in the proof mass trajectory. Thus, the associated seven states are globally observable. 
 
 
5. Simulations 
 
The HSPICE simulations and Matlab simulations are performed for the circuits shown in Fig. 4 and  
Fig. 5. In those simulations, the differential capacitors are assumed to be biased at 20 fF. The offset 
voltage of the amplifier drifts between 0 and 20 mV. The circuit noises consist of white noise and f/1  
noise. The standard deviation of white noise is 10 mV, and the low-frequency magnitude of the f/1  
noise is around 50 mV. Other parameters of the circuit are listed in Table 1. As shown at the bottom left 
of Fig. 6, without modulation techniques, the output of the charge amplifier deviates from their correct 
values by slow varying drifts and noises. The standard deviation of the noise is calculated to be 15.6 mV. 
With the modulation technique, shown at the bottom right of Fig. 6, the output signal is bias at 15.5 mV 
and the standard deviation of the noise is 0.4 mV. The modulation technique reduces the bias values 
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while introducing extra phase lag to the system, which could be a concern for system stability. Both 
circuits show bias signals (drifts) at their output voltages. 
 
 

Table 1. Parameters used for the circuit (Figs. 4, 5) simulations. 
 

Parameters Values 
V  1 volt. (DC or 500 kHz) 

1oC  220 fF 
2oC  180 fF 

C∆  50 fF, 10 kHz 
PC  1 pF 
fC  2 pF 

osV  (0 mV to 20 mV) 
 
 

 
 

Fig. 6. Voltage outputs of charge amplifiers when there exists mismatched differential capacitors, parasitic 
capacitance, offset voltages of amplifiers, white noise, and 1/f noise. 

 
In the simulations of gyroscope systems, the proof mass is assumed to be actuated 2 mµ  at 3 kHz. The 
angular rate to be measured is 1 rad/sec. The biases of the circuit outputs ( xΦ  and yΦ ) are assumed to 
be 10 mV and 12 mV. The noises that contaminate the circuit output are assumed to be white with a 
standard deviation of 1 mV. All the system parameters in (1) are assumed to be unknown except the 
mass of the proof mass. The initial guess of system states in (10) are 15 % to 20 % off from their 
respective correct values. The correct values of system parameters, normalized by the mass of the proof 
mass and a characteristic length (2 mµ ), are listed in Table 2. The sampling rate of the control algorithm 
is 2.5 MHz. Fig. 7 shows the circuit output of the gyroscope system, which measures the position of the 
proof mass along x-axis and y-axis. 
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Table 2. Parameters of the gyroscope system. 

 
Parameters Values (normalized) 

zΩ  1 rad/sec 
xxk  ( 30002 ×π )2s-2 
yyk  ( 30002 ×π )2s-2 
xyk  ( 5002 ×π )2s-2 
xxd  10 s-1 
yyd  10 s-1 
xyd  2 s-1 

xΦ  10 mV 
yΦ  12 mV 

 
 

 
 

Fig. 7. Circuits outputs for the x-axis (upper) and y-axis (lower) position sensing. The bias signals are 10 mV and 
12 mV, respectively. The circuit noises of both axes are white with a standard deviation of 1 mV. 

 
 

Fig. 8 shows the estimation of the proof mass dynamics using proposed method. According to simulation 
results, the estimated values quickly converge to their correct values. Fig. 9 shows the estimated values 
for two bias signals, six system parameters and one angular rate. The estimated values converge to their 
correct values at around 20 ms. The relative accuracy (defined by (correct values - estimated values) / 
correct values) of ( xΦ , yΦ , zΩ , xxk , yyk , xyk , xxd , yyd , xyd ), calculated after 30 ms, are ( 4105.1 −× , 

4101.2 −× , 3106.2 −× , 6102.6 −× , 7108 −× , 5108.2 −× , 3108.2 −× , 3101.3 −× , 3104.1 −× ). 
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Fig. 8. Estimations of the proof mass dynamics (position and velocity). The estimated values and correct values 
are almost identical. 

 
 

 
 

Fig. 9. Estimations of two bias signals, six system parameters, and one angular rate. The estimated values 
converge to their correct values at around 20 ms. 

 
 

Fig. 10 shows estimation results when the angular rate and two bias signals are time-varying. The 
angular rate is 1 sec/rad  at beginning and ramps up with a slope of 15 2sec/rad  at 36 ms. Similarly, 
the bias signal xΦ  is 10 mV and ramps up with a slope of 3 mV/sec at 45 ms; yΦ  is 12 mV and ramps 
up with a slope of 3.5 mV/sec at 45 ms. The fading memory technique is in effect to track time-varying 
signals while reducing the effect from circuit noise. In this case, the relative accuracy of the following 
nine states ( xΦ , yΦ , zΩ , xxk , yyk , xyk , xxd , yyd , xyd ), calculated after 30 ms, are ( 4106.4 −× , 

4107.4 −× , 2106.3 −× , 6104.3 −× , 6105.5 −× , 5107.2 −× , 2102.1 −× , 3108 −× , 3107.9 −× ). 
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Fig. 10. Estimation of system parameters (states) when the angular rate and two bias signals are time-varying. 
 
 

Using the proposed method to estimate time-varying angular rates, its frequency response ( zz ΩΩ̂ ) is 
shown in Fig. 11. According to the simulation results, the system can measure time-varying angular rates 
with the frequency of angular rates up to 30 Hz. 
 
 

 
 

Fig. 11. Frequency response of the proposed gyroscope control system. The system can measure time-varying 
angular rates with the frequency of angular rates up to 30 Hz. 

 
 

If system parameters are known and only three parameters ( zΩ , xΦ , yΦ ) needs to be estimated, the 
simulation results are shown in the left column of Fig. 12. The estimated values converge to their correct 
values at around 10 ms, and the relative accuracy are 4107.3 −× , 4103.1 −× , and 3107.4 −× . As 
compared to the simulation results shown in Fig. 9, the relative accuracy is roughly the same but the 
converging speed increases, meaning that the system bandwidth could be higher than 30 Hz. 
Furthermore, as shown in the right column of Fig. 12, the sampling rate of the control algorithms can be 
lowered to 500 kHz without degrading much of estimation accuracy. 
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Fig. 12. Parameter estimations when only three unknown parameters in the gyroscope system. The: sampling rate 
in the left column is 2.5 MHz while it is 500 kHz in the right column. 

 
 

In order to explore the minimum detectable constant angular rate, we keep lowering the angular rate to 
be measured until the parameter estimations fail. As shown in Fig. 13, with the existence of both 
structure uncertainties and signal errors, the minimum detectable angular rate is around 2101 −×  rad/sec. 
Note that, this minimum detectable angular rate is applicable to this special case only. 
 
 

 
 

Fig. 13. The minimum detectable angular rate is around 0.01 rad/s when there exists mechanical structure errors, 
signal drifts and noise. 

 
 
6. Discussions 
 
The proposed method uses state estimation techniques to compensate circuit imperfections. In essence, 
these imperfections can be identified is because of the knowledge of accompanied dynamic system. In 
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this case, the signal drifts can be identified because they are not from gyroscopes according to the 
dynamic equations of gyroscopes. Therefore, the proposed method is not limited to gyroscope systems 
but can be applied to other feedback control systems that employ the capacitance sensing scheme, such 
as force-balanced accelerometers [30], microactuators, and etc. 
 
The proposed method uses state estimation to obtain angular rate. Simulation results indicate that the 
system bandwidth is 30 Hz and the sensing accuracy is 2101 −×  rad/sec. For the same gyroscope system 
using the conventional method (or so called “open loop” control, which assumes the knowledge of all 
system parameters and perfect sensing circuits [31]), the system bandwidth is around 1 Hz and the 
sensing accuracy is 2107 −×  rad/sec. Comparing to that, the proposed method improves the sensing 
accuracy by seven times and the response time by 30 times under structure and circuit imperfections. 
 
From the viewpoint of system engineering, the interface circuit imperfections could lead to three 
possible errors: signal noise, scaling factor error, and signal drift. The proposed method demonstrates its 
capability in compensating noises and drifts in real time without complicated circuit designs. In this case, 
the scaling factor error could be induced by the mismatch of capacitance variations ( 21 CC ∆≠∆ ). And, 
our observability analysis indicates that this error can be correctly estimated under certain circumstances. 
For example, there are two scaling factors in this gyroscope system (position measurements along x-axis 
and y-axis). And, if one of them is known, the other one can be identified in real time. 
 
 
7. Conclusions 
 
In this paper, the effect of mechanical structure imperfections were accounted as unknown spring 
constants and damping coefficients of a dynamic system. The effect of interface circuit imperfections 
were accounted as unknown signal drifts and measurement noises. The analysis of system observability 
proves that these unknown parameters can be correctly identified only when the oscillation of the proof 
mass contains more than one frequency. These parameters were estimated using extended Kalman filter 
accompanied with fading memory techniques. And, the estimated parameters and estimated system 
dynamics (velocities and positions) were used to control the proof mass trajectory to meet that frequency 
requirement and to obtain angular rates in real time. 
 
Simulation results indicate that, with a signal-to-noise ratio around 20, the proposed method can 
correctly estimate nine parameters with relative accuracies smaller than 210− . Furthermore, it can 
measure time-varying angular rates with a bandwidth up to 30 Hz and a sensing accuracy of 2100.1 −×  
rad/sec. As compared to “conventional methods”, which assumes perfect mechanical structures and 
perfect sensing circuits, the proposed method improves the sensing accuracy by seven times and the 
bandwidth by 30 times. 
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