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Abstract: When measuring the dimensions of large parts with binocular stereo vision measuring system, image 
point extraction error, resulting from image sampling, is one of the key influencing factors to the measuring 
accuracy. In this paper, a mathematical model of the relationship between the measurement error caused by 
image point extraction error (resulting from image sampling) and structural parameters, such as focal length, 
baseline distance, etc. is proposed. In this model, the constraint of effective field of view (FOV) of the binocular 
sensor is taken into consideration. Then, the layout optimization is conducted by using the genetic algorithm 
(GA) to obtain a set of optimal structural parameters. Finally, both the comprehensive measurement error of the 
space points and their measurement error in each coordinate component are analyzed under the optimal layout. 
The analysis method proposed in this paper would provide effective theoretical guidance for the reasonable 
layout of the cameras without calibration. Copyright © 2013 IFSA. 
 
Keywords: Binocular stereo vision, Extraction error, Structural parameters, Genetic algorithm, Layout 
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1. Introduction 
 

Binocular stereo vision, as a non-contact 
measuring method with good real-time performance 
and high measuring accuracy, has been widely 
applied in many fields such as industrial detection, 
target identification, etc. Especially, binocular stereo 
vision measuring method has an incomparable 
advantage over other measuring methods in real-time 
measurement of geometrical dimensions for large 
parts during machining. Many studies have been 
conducted to obtain high-precision results using 
binocular stereo vision, however, most of them 
mainly focused on how to improve the accuracy of 
calibration and the precision of stereo matching. 

Meanwhile, the effect of structural parameters (focal 
length, baseline distance and camera deflection 
angle) of the binocular stereo vision measuring 
system on the measuring accuracy is often 
overlooked. In fact, structural parameters not only 
determine the range of the effective field of view 
(FOV), but also affect the distribution of 
measurement errors. During the actual measurement, 
once the camera calibration is done, then the relative 
orientations of these two cameras should remain 
unchanged, that is, the structural parameters are 
fixed. Therefore, it is necessary to conduct layout 
optimization of binocular stereo vision system before 
camera calibration. A set of optimal structural 
parameters will be acquired to improve the measuring 
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accuracy. According to the error analysis theory,  
Y. B. Guo [1] and Q. Liu [2] established an error 
model of binocular stereo vision measuring system, 
and they observed the effect of every structural 
parameter one by one on the measurement accuracy. 
However, all the structural parameters had not been 
comprehensively considered. S. O. Mason [3] 
developed a layout optimization software based on 
expert system. However, it is not easy for inexpert 
users to improve the quality of expert system by 
obtaining accurate and all-sided knowledge. 
D. Fritsch [4] used first-order design strategies to 
optimize the layout of cameras, whereas, this method 
can trap into local optimization easily. 
M. Saadatseresht [5] proposed a novel method based 
on the fuzzy logic reasoning strategy to improve the 
configuration of an existing photogrammetric 
network by adding additional imaging stations, and 
this work does not guarantee the global optimum for 
the camera placement. J. C. Chen [6] considered both 
the camera calibration and the uncertainty 
propagation during the three-dimensional 
reconstruction process of the spatial points, and the 
genetic algorithm (GA) was utilized to solve the 
layout optimization problem. However, intrinsic 
parameters of the cameras must be calibrated 
beforehand. This work is not aimed at the image 
point extraction error resulting from image sampling. 
So also is the research conducted by G. Olague [7], 
who presented a solution to the problem of optimal 
camera placement using the multi-cellular genetic 
algorithm (MGA). 

The paper is organized as follows. In Section 2, 
some descriptions of the image point extraction error 
resulting from image sampling are given. In Section 
3, the layout forms of the binocular stereo vision 
sensor are introduced. Then, a mathematical model of 
the relationship between the measurement error 
caused by image point extraction error (resulting 
from image sampling) and structural parameters is 
proposed in Section 4. In Section 5, the single 
objective optimization problem, which is transformed 
from the layout optimization problem, is solved by 
using the GA. Finally, some conclusions are 
discussed in Section 6. 

 

 

2. Image Point Extraction Error 
Resulting from Image Sampling 

 
An analog image, which is expressed with a 

continuous light intensity distribution function of the 
incident radiance, cannot be represented exactly in a 
digital computer. Hence, it is necessary to convert the 
analog image into a digital image by discretizing the 
analog image into a number of small square areas 
(called pixel) through some digital imaging device 
(e.g., digital cameras). The space discretization 
process is called image sampling. As to the pixel-
precise localization of the feature points, we can only 
obtain the location information of the pixel where the 

feature point lies. If we regard the coordinates of the 
pixel as the coordinates of that point, then, there will 
be image point extraction error resulting from image 
sampling. Supposed that the pixel size is denoted by 
   (length and width), then the maximal image 
point extraction error resulting from image sampling 
will be 0.5 . We take the sampling process of a 
single point in an image for example, as shown  
in Fig. 1. 
 
 

 

 
Fig. 1. Sampling process of a single point in the image. 

 
 

It is noted that the measurement error mentioned 
below in this paper is referring to the measurement 
error caused by the image point extraction error, 
resulting from image sampling. 
 
 
3. Layout Forms of the Binocular Stereo 

Vision Sensor 
 
The symmetry layout of two cameras, assumed to 

have identical parameters, is investigated in this 
paper. According to the relative orientations of the 
optical axes of those two cameras, the binocular 
stereo vision measuring system can be classified into 
two types: parallel-optical-axis system and crossed-
optical-axis system, as shown in Fig. 2. 
 
 

 
 

Fig. 2 (a). Layout forms of the binocular stereo sensor: 
parallel-optical-axis system ( 0  ). 
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Fig. 2 (b). Layout forms of the binocular stereo sensor: 
crossed-optical-axis system ( 0  ). 

 
 

The following notations are used: (a) 
l l l lO X Y Z  is 

the camera coordinate system (CCS) of the left vision 
sensor (CCD1), where 

lO  is the projection center of 

CCD1, 
l lO Z  is the optical axis of CCD1, and 

lY  is 

one of the coordinate axes, which can be determined 
from 

lX  and 
lZ  with the right-hand rule. (b) 

r r r rO X Y Z  is the camera coordinate system (CCS) of 

the right vision sensor (CCD2), where 
rO  is the 

projection center of CCD2, 
r rO Z  is the optical axis 

of CCD2, and 
rY  is one of the coordinate axes, which 

can be determined from 
rX  and 

rZ  with the right-

hand rule. (c) OXYZ  is the world coordinate system 
(WCS), where O , coinciding with 

lO , is the origin 

of the WCS. (d) D  is the baseline distance, 
| |=| |l rd O A O B  is the focus distance, and f  is the 

focal length. (e)   is the angle between the optical 
axis and the boundary line of the FOV, and   is the 
angle between the optical axis and Z  axis, i.e., the 
camera deflection angle. (f) 

0Z  is the starting point 

of the overlap region of the FOV, and 
0L  is the 

length of effective FOV at Z d  (as shown in Fig. 
2(a)) or cosZ d    (as shown in Fig. 2(b)). 

The CCS is defined such that its x and y axes are 
parallel to the column and row axes of the image 
plane, respectively, and the z axis, perpendicular to 
the image plane, has the positive direction pointing to 
the front of cameras. 

The effective FOV for binocular stereo vision 
measuring system is the overlapping FOV of the two 
cameras within the range of their depth of field 
(DOF), as shown by the shaded area in Fig. 2. The 
zone between dotted lines, which is denoted by L , 
represents the DOF of the cameras. The object to be 
measured must stay within the effective FOV when 
using binocular stereo vision sensor. Hence, those 
studies, analyzing the effects of structural parameters 

on the measurement error without regarding the 
constraint of the effective FOV, all have some 
limitation [1]. 

For ease of comparison, those two layout forms of 
the binocular stereo sensor are of the same baseline 
distance, as shown in Fig. 2. It can be clearly seen 
that the utilization rate of the FOV in parallel-optical-
axis system is much less than that in crossed-optical-
axis system. As to parallel-optical-axis system, a 
wide range of effective FOV can be gotten by 
significantly reducing the baseline distance. By 
contrast, as to crossed-optical-axis system, the layout 
of cameras is relatively free and a large baseline 
distance can be taken. Actually, measuring 
equipments in the workshop should be kept as 
compact as possible, so the baseline distance cannot 
be too large. However, when >  , there will be 

0L D , so in most cases, the range of effective FOV 

cannot meet the requirements of dimension 
measurement for large parts. Therefore, analyses are 
conducted just for the crossed-optical-axis system 
( 0    ) in this paper. 
 
 

4. Mathematical Relationship  
Between the Measurement Error  
and Structural Parameters 

 

The structural parameters of the binocular stereo 
vision measuring system mentioned in this paper 
include focal length f , baseline distance D  and the 

angle   between the optical axis and Z  axis. 
As illustrated in Fig. 3, the 3D coordinates of 

point P  in the WCS is denoted by ( , , )w w wX Y Z , and 
its corresponding coordinates in the CCS of CCD1 
and CCD2 are ( , , )l l lX Y Z  and ( , , )r r rX Y Z , 
respectively. The image points of point P  in the 
image planes of CCD1 and CCD2 are lp  and rp , 
and their corresponding coordinates in the physics 
image coordinate system (in unit of millimeter) are 
( , )l lx y  and ( , )r rx y , respectively. 
 
 

 

 
Fig. 3. The image points of point P  in the image planes  

of two vision sensors. 
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For the pinhole camera model that describes the 
perspective projection from three dimensions to two 
dimensions, the following expressions that relate the 
coordinates of point P  in the CCS and the 
coordinates in the physics image coordinate system 
are given by: 
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The relationship between the coordinates in the 
CCS and the corresponding coordinates in the WCS 
can be expressed as the following simultaneous 
equations: 
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After substituting Equation (2) and Equation (3) 

into Equation (1), the relationship between the 
coordinates in the physics image coordinate system 
and the coordinates in the WCS can be represented 
by: 
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The expression of the coordinates of point P  in 

the WCS can be resolved from all the aforementioned 
equations:
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The above derivation process is built on the 

premise of perspective projection. However, owing to 
the image sampling, the corresponding image point 
of the point P  with continuous distribution in 3D 
space is discrete in the image plane, so there are 
image point extraction errors [8-9]. As to those 
location methods with pixel accuracy, whose location 
accuracy is 0.5 pixels, the theoretical position of an 
image point deviates from the actual extraction result 
within ±0.5 pixels. If we consider the case where the 
measurement error is maximal, then the image 
extraction errors in the left and right image planes 
will be: 

 
 0.5l r     , (8) 

 
where    denotes the pixel size. 

Let ( , )l lx y   and ( , )r rx y   represent the actual 
extraction coordinates in the physics image 
coordinate system corresponding to the theoretical 
coordinates ( , )l lx y  and ( , )r rx y . The relationship 
between the actual extraction coordinates and the 
theoretical coordinates is as follows: 
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The actual 3D coordinates of point P  in the 

WCS can be acquired from the actual extraction 
coordinates of the image point in the physics image 
coordinate system: 
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The mathematical model of the relationship 
between the measurement error Q  and the structural 

parameters is set up: 
 

 2 2= (X X ) + ( ) ( )w w w w w wQ Y Y Z Z       (13) 

 
 
5. Layout Optimization of the Binocular 

Stereo Vision Measuring System 
 
5.1. Optimization Problem 
 

In the dimension measuring system for large 
parts, the imaging devices are two monochrome CCD 
cameras (Princeton MegaPlus II ES4020) with a 
resolution of 2048 2048  pixels. Their active area of 
the camera view has the dimension of 15.2 mm  
15.2 mm and the pixel size    is 7.4 mm   
7.4 mm. In order to meet the needs of different sizes 
of the FOV, the zoom lens (Tamron AF18-250 mm 
F/3.5-6.3 Di-II LD) with a focal range of 18-250 mm 
and an aperture range of / 3.5 / 6.3F F  is selected. 
As the light rays passing the lens tube and the 
diaphragm, some may be diffracted. In general, the 
quality of a lens increases as diaphragm closes down 
before the proportion of the diffracted light and the 
non-diffracted light becomes too significant to be 
neglected. However, with a loss-pass filter (BD, 
450SP) in front of each camera, the background light 
will be relatively weak, and hence a large aperture 
value / 3.5F  is chosen here so as to capture clear 
images by allowing more light to strike the CCD 
plane. To avoid the damage of measuring devices, the 
measuring system is located at about 8000 mm away 
from the machining center, so the focus distance d  
can be set to 8000 mm in this paper. 

According to the requirements of the actual 
dimension measurement for large parts, the size of 
effective FOV should meet the following limits: the 
length range (along the X axis) is 3000 mmL  , the 
width range (along the Z axis) is 1000 mmW  and 
the height range (along the Y axis) is 3000 mmH  , 
as shown in Fig. 4. In order to obtain a compact 
layout, and owing to the dimension limits of the 
cameras themselves and their mounting pedestals, the 
range of baseline distance is set to 
100 mm 2000 mmD  . 

In the XOZ  plane, the angle between the optical 
axis and the boundary line of the FOV is computed  
as follows: 

 

 
arctan( )

2 f

  , (14) 

 
where   represents the length or the width of the 
active area of the camera view, i.e., =15.2 mm . 

 

 

 
 

Fig. 4. Structural sketch map of the binocular  
stereo vision measuring system. 

 
 
The zone of acceptable sharpness of an image is 

referred to as the depth of field (DOF), as shown in 
Fig. 5. 

Front depth of field (F-DOF) is given by: 

  2

2
1=

F CoC d
L

f F CoC d

 

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, (15) 

 Rear depth of field (R-DOF) is given by: 

  2

2
2=

F CoC d
L

f F CoC d

 

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, (16) 

 

Depth of field (DOF) can be calculated  
as follows: 

  2 2

4 2 2 2

2
= 1 2

f F CoC d
L L L

f F CoC d

  
    

  
, (17) 
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where F  represents the aperture value, and CoC  
represents the permissible circle of confusion, the 
CoC  diameter limit may be given by the “Zeiss 
formula”, /1730CoC a , with a  being the diagonal 

of the camera view (i.e. 15.2 2 mm ) [10]. Then the 

value of CoC  can be calculated by: 
 

 15.2 2 /1730mm 0.0124mmCoC    (18) 
 
 

 
 

Fig. 5. Geometric interpretation of DOF  
and permissible CoC . 

 
 
As illustrated in Fig. 4, the equations of those 

lines where the boundary lines of the DOF lie are 
formulated as follows: 

 
 1:  tan ( ) sec ( 1)l z x D d L         (19) 

 
 2 :  tan ( ) sec ( 2)l z x D d L         (20) 

 
 3 :  tan sec ( 1)l z x d L         (21) 

 
 4 :  tan sec ( 2)l z x d L         (22) 

 
The equations of those lines where the boundary 

lines of FOV lie are as follows: 
 

 5 :  cot( + ) ( )l z x D      (23) 
 

 6 :  cot( )l z x     (24) 
 

 7 :  cot( ) ( )l z x D       (25) 
 

 8 :  cot( + )l z x    (26) 

The equations of those lines where the boundary 
lines of the measurement range (along the length 
direction) are as follows: 

 
 9 :  / 2 / 2l x D L   (27) 

 
 10 :  / 2 / 2l x D L   (28) 

 
( ')C C  is the intersection point between line 

9( 9 ')l l  and line 2l , ( ')U U  is the intersection point 

between line 9( 9 ')l l  and line 3l , ( ')V V  is the 

intersection point between line 9( 9 ')l l  and line 5l . 

There are two situations for the width of FOV, W : 
=| |W CU  and =| ' '|W C V . There will be: 

 
 min{| |,| ' ' |}W CU C V , (29) 

 
where 

 
 | |= tan secCU L L     (30) 

 
 (tan cot( )) ( )

| ' '|=
2

            sec ( 2)

D L
C V

d L

  



   


   
 (31) 

 
The measurement errors are not evenly distributed 

in the effective FOV. Without loss of generality,  
180 points, which are distributed uniformly over the 
measuring space (the cuboid shadow area located at 
the center of the effective FOV, as shown in Fig. 6) 
with the size of 3000mm 1000mm 3000mm   
(length, width and height), are chosen as the test 
points. Those points are numbered by the following 
rules: the measuring space is divided into five 
equidistant test planes along the Z  axis, and the 
distance between two adjacent test planes is 
1000/4=250 mm. There are 36 points (6 rows and  
6 columns, meanwhile, row coordinates increase 
downward and column coordinates to the right) 
evenly distributed in each test plane 
(3000 mm×3000 mm in size). So we can let 

,( , )k i jP represent the test point at row i, column j of 

the test plane k. As a result, the values of X are {D/2-
1500, D/2-900, D/2-300, D/2+300, D/2+900, 
D/2+1500}, the values of Y are  
{-1500, -900, -300, 300, 900, 1500} and the values of 
Z are five values chosen in the range from 
1000( ')

'C

C U

z d
d

z z





 to 

1000( ' )
 ' U

C U

d z
d

z z





or in the 

range from
1000( ')

'C

C V

z d
d

z z





to 

1000( ' )
' V

C V

d z
d

z z





 

equidistantly, where 
 

 ' cosd d    (32) 
 

The Z coordinate of point ( ')C C  is: 
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 z tan ( ) / 2 sec ( 2)C D L d L          (33) 
 
The Z coordinate of point ( ')U U  is 

 
 z tan ( ) / 2 sec ( 1)U D L d L          (34) 

 
The Z coordinate of point ( ')V V  is: 

 
 z cot( ) ( ) / 2V D L      (35) 

 
When the length L is set to 3000mm  there 

should be 3000| | 1000LCU    and 3000| | 1000LCV   . 

 
 

 
 

Fig. 6. Distribution of the test points. 
 
 

Above all, the layout optimization problem can be 
translated into the single objective optimization 
problem with nonlinear inequality constraints and 
domain constraints (i.e., the lower and upper bounds 
for the optimization variables), as follows: 
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, (36) 

 
where  0 / 2tan( )Z D     and the optimization 

variables are those three structural parameters ( f , 

D  and  ). There should be a set of optimal 

structural parameters which can minimize the 
measurement error. 

 

 5.2. The Genetic Algorithm (GA) 

 Most of the existing optimization methods, whose 
optimized results largely depend on the selection of 
initial values, are more likely to exhibit local search 
ability. However, the GA, which is based on the 
natural selection and natural inheritance in biosphere, 
is an effective heuristic stochastic search algorithm 
combining the survival-of-the-fittest mechanism in 
nature with the random exchange mechanism of 
chromosomes within groups. The GA has the ability 
in searching the entire solution space with more 
likelihood of finding the global optimum [11], for 
this reason, the GA is selected to solve the layout 
optimization problem of binocular stereo vision 
measuring system in this paper. The process of the 
GA is described as follows: the algorithm starts with 
a random initial population, then, the subsequent 
generation (called children) with good quality, which 
means a better solution to the optimization problem, 
is created from the current population (called parents) 
through genetic operators (selection, crossover and 
mutation). Next, such cycle of evolving process is 
repeated for multiple times until one of the stopping 
criteria is met. 

Population size, encoding method, the method 
that each genetic operator adopts and stopping 
criteria, etc. all have a big impact on convergence 
speed and optimization result of the GA. 

(a) Processing method of the constraints, design 
of the fitness function and the fitness scaling. 

In this paper, as to the constrained optimization 

problem ' ( )objF x , processing methods of the 

constraints ( ) ( 1,2,..., )ic x i m  include rejecting 
method, repairing method and penalty method, where 
the penalty method seems to be the most popular. In 
this paper, the penalty method is used to convert the 

constrained optimization problem ' ( )objF x  into an 

unconstrained optimization problem ( )objF x ,  

as follows: 

  
'

1

( ) ( ) ( )
m

obj obj i
i

F x F x M c x



   , (37) 

 
where M  represents the penalty factor, the initial 
value of M  is set to 10. When the problem is not 
solved to the required accuracy and those constraints 
are not satisfied, the penalty factor is increased by 

100. ( )ic x  is defined by: 

 

 
2( ( )) ,  ( ) 0,
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i i
i
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c x
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, (38) 
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where ( )ic x  is the form of nonpositive inequality 

transformed from the constraints in Equation (36). 
There is a one-to-one correspondence between the 

fitness function ( )fitF x  and the objective function 

( )objF x . Besides, the fitness function ( )fitF x  should 

meet the following requirements: the fitness value is 
nonnegative; the optimization direction of the 
objective function corresponds to the direction in 
which the fitness value increases. For the minimum 
optimization problem, the fitness function ( )fitF x  

can be acquired by the following conversion from the 
objective function ( )objF x  [12]: 

  
max max

max

( ),  ( )
( )

0,                      ( )
obj obj

fit
obj

C F x if F x C
F x

if F x C

   
, (39) 

 where maxC  is the relatively large number so as to 

ensure that ( ) 0fitF x  . 

As to the GA, the selection probability of each 
individual is determined by its corresponding fitness 
value. If just the expression of ( )fitF x  mentioned 

above is used to calculate the fitness values of the 
individuals, premature convergence and the random 
walk phenomena will occur easily. Therefore, a 
proper fitness scaling method should be used to 
enlarge or narrow the fitness values appropriately. 
Popular methods of fitness scaling include linear 
scaling, power law scaling, index scaling and rank 
scaling. Rank scaling method has the similar effects 
with other scaling methods, moreover, it can not only 
avoid selecting the scaling parameters [13], but also 
remove the effect of the spread of the raw fitness 
values. In this paper, the rank scaling method  
is adopted.  

(b) Population size (PopSize). 
PopSize is one of important factors affecting the 

performance of the GA. If PopSize is too small, 
performances of the GA will become poor for the 
absence of some valid genes. Large PopSize will help 
the GA cover a wide domain of possible solutions 
and effectively avoid the premature convergence. 
However, the larger the PopSize, the longer CPU 
time the GA will take. As to constrained problems, 
large PopSize should be selected to ensure that the 
feasible solutions within the population are enough. 

(c) Encoding method. 
The encoding method largely determines the 

efficiency of the genetic computation. Encoding 
methods include binary encoding, real-number 
encoding (i.e., float-point encoding), Gray encoding, 
and serial-number encoding, etc. Here, real-number 
encoding method should be adopted to improve the 
computational complexity and the computation 
precision of the GA [14]. The precision of the real-
number encoding method, depending on the precision 
of the computer, is better than the other methods. 

 

(d) Selection operator. 
The main goal of selection operator is to avoid the 

deletion of useful genes, and to improve the 
computation efficiency and global convergence. 
Common methods of selection operator contain 
roulette wheel selection, tournament selection, 
stochastic universal sampling selection, remainder 
stochastic sampling selection and elitist selection, etc. 
Here, the stochastic universal sampling selection 
method is selected. The selection probability of each 
individual is proportional to its scaled value. 

(e) Crossover operator and mutation operator. 
A good collaboration between the crossover and 

the mutation, as two essential genetic operators to the 
GA, will make the algorithm obtain a better 
evolutionary performance. The crossover children are 
produced by recombining the genes of parents, while 
the mutation children are created by randomly 
changing the genes of individual parents. The values 
range of crossover probability cP  is usually from  

0.6 to 1.0, and the values range of mutation 
probability mP  is usually from 0.005 to 0.01 [12]. 

Methods of the crossover operator mainly include 
one-point crossover, two-point crossover, scattered 
crossover, arithmetic crossover and uniform 
crossover. Here, the scattered crossover method is 
chosen. The principle of this method is to create a 
random binary vector, and produce a child by 
combining the genes where the vector is 1 from one 
parent with the genes where the vector is 0 from the 
other parent. Methods of the mutation operator 
mainly include simple mutation, uniform mutation, 
boundary mutation, non-uniform mutation, Gaussian 
mutation and adaptive feasible mutation. Adaptive 
feasible mutation is often chosen for constrained 
optimization problems [15]. The principle of this 
method is to randomly generate mutation directions 
by referring to the constraints of the optimization 
problem and the running state of the last iteration. 
That is, a self adaptation of mutation probability mP  

is used. Next, we only consider how to determine a 
proper value of the crossover probability cP . 

(f) Stopping criteria. 
In this paper, two criteria are used to determine 

when to terminate the GA: one is the number of 
iterations is equal to the maximum number of 
iterations, MaxGenera; the other is the weighted 
average change in the fitness value over a certain 
number of consecutive generations (ConGenera) is 
less than the function tolerance. The GA will stop as 
soon as either of the two stopping criteria is met. 

For ease of comparison of the solution quality 
under different crossover probabilities cP , a set of 

algorithm parameters, under which the GA is 
relatively easy to converge, was set as follows: 
PopSize (equal to 100), MaxGenera (equal to 400), 
ConGenera (equal to 100) and function tolerance 

(equal to -610 ). cP  was set to increase from 0.6 to  

1.0 with a step size of 0.01, then the GA was run ten 



Sensors & Transducers, Vol. 161, Issue 12, December 2013, pp. 74-85 

 82 

times for each value of cP . The means and standard 

deviations of the best fitness value are shown in  
Fig. 7. All the experiments were conducted on the 
desktop with 1.98 GB of RAM and 2.53 GHz 
processor. 
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Fig. 7. The means and standard deviations of the best 

fitness values under different cP . 

 
 

As shown in Fig. 7, the choice of crossover 
probability has an apparent influence on the 
convergent results. The means and standard 
deviations of the best fitness values are less while the 
crossover probability cP  is equal to 0.7, 0.78 and 

0.81. Then we compare the solution quality and 
speed of the GA under these three crossover 
probabilities, as listed in Table 1. By contrast, setting 

cP  to 0.78 is the right choice for the fitness function 

in this paper. 
 
 

Table 1. Further comparison of the three  
crossover probabilities. 

 
Items to be 
compared 

0.7cP   0.78cP   0.81cP   

The mean value 
of the best 

fitness values 
/mm 

22.767 23.350 23.129 

The standard 
deviation of the 

best fitness value 
/mm 

19.891 10.171 15.342 

The mean value 
of time 

/s 
1234.294 333.929 360.781 

 
 

In order to get the global optimal solution, a much 
larger PopSize was selected and much higher 
stopping criteria were set. The parameters that the 
GA uses were set as follows: PopSize (equal to 500), 
MaxGenera (equal to 2000), ConGenera (equal 

to 500) and function tolerance (equal to -1210 ). Then 
the GA program was run several times, the results are 
listed in Table 2. 

Table 2. Optimization results of the GA. 
 

No.
Optimal solution Optimal 

value/mm 
CPU 

time/s f /mm D /mm  /rad 

1 42.552 2000 0.103 5.834 10076.6
2 42.552 2000 0.103 5.834 10125.5
3 42.552 2000 0.103 5.834 10137.3
4 42.552 2000 0.103 5.834 10212.3

 
 

As shown in Table 2, the optimal solution to the 
optimization problem is: f  equals to 42.552 mm, D  

equals to 2000 mm and   equals to 0.103 rad (i.e., 

5.92 ); the optimal value is 5.834 mm; the mean 
value of CPU time is about 2.8 hours. 
 
 
5.3. Error Analysis Under Optimal 

Parameter Settings 
 

The placement of the binocular stereo vision 
measuring system is accomplished according to the 
optimal parameter settings (i.e., f  equals to 

42.552 mm, D  equals to 2000 mm and   equals to 

5.92 ). Then the comprehensive measurement error 
Q  of those test points in different locations and the 

measurement error in each coordinate component 
( wX , wY  and wZ ) are observed, where 
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 (40) 

 
As shown in Fig. 8, the comprehensive 

measurement error of all the test points will increase 
with the measuring distance increasing along the  
Z axis. By comparing the comprehensive 
measurement error of test points in different test 
planes, we can see that the distributed regularity of 
the measurement error in each plane is identical. 
Take one of the test planes (k=1) for example, as 
shown in Fig. 9. The comprehensive measurement 
error is minimal in the center of the test plane, and 
the farther the test point is away from the center, the 
bigger the error is. The comprehensive measurement 
error is maximal at the four corners of the test plane. 
Likewise, take one of the test planes (k=1) for 
example, the measurement error in each coordinate 
component is shown in Fig. 10. 

As shown in Fig. 10, the measurement error in Zw 
coordinate component, which is much bigger than 
those in the other two coordinate components, 
changes little in the entire test plane. Whereas, the 
measurement error in Xw coordinate component is 
minimal in the center of Xw, i.e., the center of the 
baseline. Moreover, when the value of Xw is kept 
constant, the measurement error in Xw coordinate 
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component doesn’t change with different values of 
Yw. Similarly, the measurement error in Yw 
coordinate component is minimal in the center of Yw, 
and when the value of Yw is kept constant, the 
measurement error in Yw coordinate component 
changes little with different values of Xw. 

 

 

 
 

Fig. 8. The comprehensive measurement error of the test 
points in different locations. 

 

 

 
 

Fig. 9. The comprehensive measurement error of the test 
points in the test plane (k=1). 

 

 

 
 

Fig. 10 (a). Measurement error in each coordinate 
component of the test points in different locations:  

in Xw coordinate component. 

 
 

Fig. 10 (b). Measurement error in each coordinate 
component of the test points in different locations:  

in Yw coordinate component 
 
 

 
 

Fig. 10 (c). Measurement error in each coordinate 
component of the test points in different locations:  

in Zw coordinate component. 
 
 
5.4. Improvement of Measuring Accuracy 
 

1) Increasing the baseline distance. 
The optimal solution to the constrained objective 

optimization problem mention above is  
[42.552 2000 0.103], i.e., when 42.552 mmf  , 

2000 mmD   and 0.103 rad  , the objective 

function value is optimal. The value of D happens to 
be the upper bound of the value range of D, and 
based on that, some research is done to obtain some 
related rules by changing the upper bound of the 
value range of D. The parameters of the GA are set 
to: PopSize (equal to 500), MaxGenera (equal to 
2000), ConGenera (equal to 500) and function 

tolerance (equal to 1210 ). The optimal solutions and 
optimal values under different value ranges of D are 
presented in Tab. 3. 

As shown in Table 3, it can be clearly seen that 
the optimal value of D is always equal to the upper 
bound of the value range of D. So we can conclude 
that the measurement error will reduce with the 
increasing of the baseline distance. As a result, on the 
condition that the measuring system meets the 
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requirement of the layout on site, a longer baseline 
distance is more proper. 
 
 
Table 3. The optimal solutions and optimal values under  

different value ranges of D. 
 

Value range  
of D/mm 

Optimal value  
/mm 

Optimal solution 
[ f /mm D /mm  /rad]

100≤D≤1500 7.916 [41.799  1500  0.069] 
100≤D≤1600 7.394 [41.957  1600  0.076] 
100≤D≤1700 6.934 [42.111  1700  0.083] 
100≤D≤1800 6.526 [42.261  1800  0.090] 
100≤D≤1900 6.161 [42.408  1900  0.097] 
100≤D≤2000 5.834 [42.552  2000  0.103] 
100≤D≤2100 5.538 [42.693  2100  0.110] 
100≤D≤2200 5.269 [42.830  2200  0.117] 
100≤D≤2300 5.025 [42.964  2300  0.124] 
100≤D≤2400 4.801 [43.096  2400  0.131] 
100≤D≤2500 4.595 [43.224  2500  0.138] 

 
 

2) Using the subpixel-precise extraction 
technology. 

The above mentioned studies on the measurement 
error we have conducted so far are pixel-precise. 
Often, the subpixel-precise extraction technology, as 
an image processing tool, can make the resolution of 
the image become higher than a pixel. The accuracy 
of subpixel-precise location algorithms is generally 
0.1~0.3 pixels, and in some ideal cases, the accuracy 
of some algorithms can even reach 0.01 pixels [16]. 
Assuming that the locating accuracy of subpixel-
precise extraction technology is   pixels, when we 
consider the case where the measurement error 
reaches the maximum, then the image extraction 
error of the left and right image plane is 

0.5l r     . Fig. 11 shows how the optimal 

value of the objective function changes as the 
accuracy grades of the location algorithms are varied. 
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Fig. 11. The optimal value varies with the accuracy  
grade of the location algorithm. 

 
 

Fig. 11 shows that there is a linear relationship 
between the comprehensive measurement error and 

the accuracy grade of the subpixel-precise location 
algorithms. Furthermore, the measurement error can 
be reduced effectively by using the subpixel-precise 
extraction technology. 

 

 6. Conclusions 
 

In this paper, a mathematical model of the 
relationship between the measurement error caused 
by image point extraction error (resulting from image 
sampling) and structural parameters, such as focal 
length, baseline distance, etc. was proposed. The GA 
is adopted to optimize the layout problem of the 
measuring system in which the cameras and lens 
have been given. Then, under the optimal parameter 
settings, the distributed regularities of the 
comprehensive measurement error and the 
measurement error in each coordinate component are 
analyzed. The comprehensive measurement error is 
minimal in the center of the test plane, and the farther 
the test point is from the center of the test plane, the 
bigger the error is. The measurement error in Zw 
coordinate component is much bigger than those in 
the other two coordinate components. When 
measuring the dimensions of the large parts, the 
longer the baseline distance, the smaller the 
measurement error is. Furthermore, the measurement 
error will be effectively reduced by using some sub-
pixel extraction technology. The research results in 
this paper will provide significant guidance and 
valuable reference for the proper layout of the 
binocular stereo vision measuring system. 
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