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Abstract: We have developed a nanogenerator that is driven by mechanical forces to produce 
continuous direct-current output. The nanogenerator was fabricated with titanium dioxide nanoparticle 
arrays that were placed beneath a conducting electrode with a small gap. The force drives the electrode 
up and down to bend and/or vibrate the nanoparticles. A piezoelectric process converts mechanical 
energy into electricity. The electrode collects the output electricity from all of the nanoparticles. The 
approach presents an adaptable, mobile, and cost-effective technology for powering nanodevices by 
harvesting mechanical energy from the environment. Copyright © 2010 IFSA. 
 
Keywords: Piezoelectric sensor, Electromechanical nanogenerator, Flexoelectricity in nanostructures. 
 
 
 
1. Introduction 
 
The development of wireless nanodevices is of crucial importance to operate biosensors and 
environmental sensors, for the nanorobotics, for self-powered biomedical devices. Piezotronics is the 
field of application of semiconducting and piezoelectric properties, which leads to the fabrication of 
piezoelectric diodes, sensors and nanogenerators [1, 2]. The near future of research is the integration of 
multifunction devices in a single nanosystem having sensor, control, communication and actuator 
combined capacities. The piezoelectric effect at nanoscale has been proved experimentally in 2006  
[1, 2] and theoretically in 2008 [3, 4] The challenge is to fabricate nanogenerators which harvest the 
energy of vibrations from the environment, producing electricity. 
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Recently, an approach for converting mechanical energy into electrical energy has been suggested by 
using piezoelectric zinc oxide (ZnO) nanowire arrays [1, 2]. The conversion of energy can be achieved 
by creating a Schottky junction between ZnO and a metallic corrugated zig zag electrode which 
realizes a rectifying contact with typical resistance of the order 100 k. The key aspect of such 
generators is the possibility of driving the top electrode up and down to bend the ZnO nanowires 
which create a voltage by their piezoelectric properties. This technique has been tested for ultrasound 
waves with typical output powers P1 pW per mm2 with a surface density of nanowires 1010/cm2 
corresponding to a diameter of nanowires 40 nm. In order to become useful to operate a nanodevice 
composed of a single nanotube working typically at 10 nW, nanogenerators of this kind need to be 
optimized. Possibilities of improvements are the use of patterned electrodes and/or the growth of 
highly uniform nanoarrays of oxide, matching the design of the electrode. It has been estimated that 
the performance can be improved by two to three orders of magnitude [2]. 
 
In this paper we report results of TiO2 based nanogenerators. The output power of such nanogenerators 
is produced by piezoelectricity in the nanostructured TiO2 particles due to the flexoelectric effect 
occurring in nanoparticles [3, 4]. 
 
 
2. Experimental 
 
The experimental set up is illustrated in Fig. 1. An array of aligned TiO2 nanostructures of a film 
deposited on a conducting substrate was covered by a conductive ITO/glass electrode. The ITO 
coating on glass enhanced the conductivity of the electrode and at the same time created a Schottky 
contact at the interface with TiO2. The nanostructures of TiO2 were obtained by a deposition protocol 
by a paste deposition of commercial TiO2 powder (by Degussa) on identical ITO on glass followed by 
suitable sinterization procedure through heating overnight. 
 
 

 
 

Fig. 1. Set-up of the generator. Nanoparticles are schematically described by cusps  
that can be bended by the top electrode. 

 
 
Starting from partly already nanostructured commercial powders (Degussa), comprising a known 
proportion of anatase and rutile phases (70 %-30 % ) [5] we increase the degree of separation of TiO2 
clusters by mechanical machining in acqueous phase, in organic phase or both and/or through 
sonication of a concentrated emulsion of TiO2 which helps particle dispersion. Such emulsion is then 
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applied to ITO/glass substrates (Optical Filters Ltd., England). The deposition method is a dr. Blade or 
spray deposition method. A sintering procedure is applied by heating the devices overnight at a 
temperature T=550oC. The final TiO2 films present a uniform distribution at optical inspection with 
tightly sinterized nanograins. With this technique we obtain films with typical thickness 20 m. 
 

 
2.1. Characterizations 
 
We have characterized the films by AFM microscopy. At the µm scale they are constituted by a 
disordered array in the xy plane with cusps. At larger resolution they exhibit a clear nanometric 
structure with nanocrystals having comparable dimension 30 nm within the xy plane and in the z-
direction (Figs. 2 and 3). If they were distributed compactly, a surface density 1012 cm-2 on the average 
would result. 
 
 

 
 

Fig. 2. AFM scan of TiO2 films at the micron scale. 
 
 
A similar nanostructure is revealed for the ITO electrode, with slightly smaller density 1010 cm-2 and 
diameter and height 100 nm and 5 nm respectively (Fig. 4.) 
 
Each of the structures appears as nanocrystals distributed irregularly in size and orientation. 
 
Typical dimensions of the devices are or order 5x5cm2. Various configurations of the devices have 
been considered. A typical configuration was obtained by placing the ITO electrode in contact with the 
TiO2 array and manipulating it by a probe station. Pressure was applied on the sandwich through a 
calibrated gauge force of maximum value 50 N. 
 
In another configuration the device was sealed to prevent infiltration of liquids; to improve the 
conductance of the devices an electrolyte was infiltered before sealing, using a procedure similar to the 
one adopted in the preparation of Graetzel’s cells; a typical device of this kind had resistance of order 
100 k. Further arrangements were also explored where the pressing of electrodes were obtained by 
mechanical stress at the borders of the devices. 
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Fig. 3. AFM image of TiO2 films at the nanometer scale. 
 
 

 
 

Fig. 4. AFM scan of ITO conducting films on glass. A nanometric structure is present. 
 
 
2.2. ITO/glass Substrate 
 
The commercial ITO/glass substrates (Optical Filters Ltd., England) have typical surface resistance  
20  and a resistivity = 20 10-4 cm, such values being compatible with those reported in the 
literature [6]. 
When used as the substrate for deposition of the oxide, the ITO structure acts as a template to the 
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arrangement of the oxide on it. Good adhesion is obtained for TiO2 films indicating a good crystal 
structure matching. From the other hand, when ITO is used as the top electrode, its nanometric array 
structure is penetrated on contact by the smaller TiO2 array. 
 
 
3. The Principle of the Nanogenerator 
 
The physical principle for creating charges in the nanoparticles is a coupling of piezoelectric and 
semiconducting properties [1]. The deflection of the nanoparticle by the electrode creates a strain field, 
with the outer surface being stretched (positive strain ε) and inner surface compressed (negative strain 
ε). This results in an electric field along the z direction inside the nanoparticle and on its surface trough 
the piezoelectric effect, parallel to the z-axis at the outer surface and anti-parallel to the z-axis at the 
inner surface. Across the nanoparticle, the electric potential distribution from the compressed to the 
stretched side surface is approximately between V-(negative) to V+ (positive). The electrode at the 
base of the nanoparticle is grounded. 
 
The potential is created by the relative displacement of the Ti cations with respect to the O2 anions in 
the crystal structure; thus, these ionic charges cannot freely move and cannot recombine without 
releasing the strain. The potential difference is maintained as long as the deformation is in place and no 
foreign free charges (such as from the ITO contact) are injected. 
 
The created charges can undergo a discharge process. In the first step, the conductive electrode that 
induces the deformation is in contact with the stretched surface of positive potential (A-type 
nanoparticles in Fig. 1). It has a potential nearly zero, so that it is negatively biased with respect to 
TiO2 for ΔV =0 – V+ < 0. The ITO-semiconductor interface in this case is a reverse-biased Schottky 
barrier and negligible current flows across the interface. In the second step, when the electrode is also 
in contact with the compressed side of the nanoparticle ( D-type nanoparticels in Fig. 1.) this ITO – 
TiO2 interface is positively biased for ΔV= 0 –V- > 0. The interface in this case is a positively biased 
Schottky barrier, and it produces a sudden increase in the output electric current. The current is the 
result of ΔV driven flow of electrons from the semiconductor TiO2 to the electrode. The flow of the 
free electrons through the nanoparticle to the electrode will neutralize the ionic charges distributed in 
the volume of the nanoparticle and thus reduce the magnitudes of the potentials V+ and V-. 
 
 
3.1. The Concept of Introducing the Zigzag Electrode 
 
When the top electrode has a configuration as shown in Fig. 1, by scan the electrode back and forth, 
we can reproduce the two processes discussed above. The electrode will exert a lateral force on the 
nanoparticles so by successive compression steps we can reproduce the two configurations discussed 
above and there will be generation of electricity. During the scan nanoparticles may either be bent and 
make contact with the electrode (A and D-type in Fig. 1.) or contact the electrode without being bent 
(B-type) or remain isolated without any contact (C- type). The B nanoparticles constitute a parallel 
resistance of the device (see discussion below), the C nanoparticles are an infinite resistance not 
entering in the process. 
 
 
4. Results 
 
TiO2 generators exhibit a spontaneous voltage V~0.5 V, as measured by a high-impedance voltmeter, 
within their resistance range R~ 1M, under the pressing conditions of the sandwich which ensure 
reasonable electric contact. In this state they change the voltage and resistance markedly as a function 
of pressure on the top electrode. The pressure is achieved and measured through the calibrated force 
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gauge. Both static and dynamic pressure is applied so as to test the response of the device also to 
definite rates of changing force. The junctions are quite sensitive to small variations of the external 
force (typical rates 1N/s) with excursions of open circuit voltage V=1-10 mV. Static measurements are 
reported in Figs. 5 and 6. 
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Fig. 5. Induced voltage change vs. applied force (static). 
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Fig. 6. Induced resistance change vs. applied force (static). 
 
 

Large fluctuations (from sample to sample and in the same sample) appear in the voltage and the 
resistance, accompanied by time relaxation towards equilibrium as well as large hysteretic behaviour. 
Typically, times of order of several minutes can be required to achieve stabilized values. These 
fluctuations arise from the set-up of the junctions, and are determined by the pressing condition of the 
top electrode on the oxide film. 
 
The lower contact on the ITO/glass substrate may be assumed to be ohmic, as indicated by the 
employed deposition method, which is a standard one in the literature [5]. 
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The principal results obtained with such devices are summarized in Table 1. The geometrical 
parameters are reported in Table 2. 
 
 

Tab. 1. Electric parameters of TiO2 and ZnO devices. 
 

 TiO2 (this work) ZnO (from ref. [2] ) 
Resistance () 5 .106 3.5 .103 

Voltage (V) 
 ~ 0.5 (static)~ 10-3 
(dynamic) 

~ 0~ 10-3 

Current (A) .10-7(static)10-9 10-9 
Power (W) 10-8 10-12 

 
 

Table 2. Geometric parameters of device and film nanoparticles. 
 

 TiO2 (this work) ZnO (from ref. [2] ) 
Area (cm2) 10 2 10-2 
Density cm-2  1011 109 
Height (nanoparticle)  10 nm 1 µm 
Diameter (nanoparticle) 10 nm 40 nm 
Film thickness (m) 20-30  

 
 
Since the voltage is increased and the resistance is decreased by the applied force F, the voltage to 
resistance ratio, i.e. the internal current of the device, is an increasing function of F and so is for the 
power . 
 
The voltage from the high impedance voltmeter provided the measure of the current itself (see below). 
 
The nanogenerators are equivalent to a voltage source Vs plus an internal resistance Ri and a resistance 
Rw , parallel to the portion that generates power [2]. As suggested in ref. [2] this resistance derives 
from nanostructures that are in contact with the electrode but cannot be bent or move freely; thus, they 
do not actively participate in the current generation, but they do provide a path for conducting current. 
 
The capacitance of the system is ignored in the circuit in order to simplify the discussion about dc 
measurement. The capacitance of the junctions turns out to be of order of magnitude C10-10 F. 
 
The short circuit current produced by the nanogenerator is Isc ≈ Vs /Ri. Since Rw was much smaller 
than the inner resistance of a voltage meter (ideally infinity), when the voltage was measured at open 
circuit, a loop was formed between the power generating portion of the system and Rw [2]. In this case, 
the current is IW =Vs/(Ri+Rw) and the measured voltage V is that across the power-generating 
portion, 
 
 V ≈ VsRw/(Ri + Rw)=(Vs/Ri)Req , (1)
 
where Req=RiRw/(Ri+Rw) is the equivalent resistance of the device. This leads to a direct 
proportionality of V to Isc. Therefore, a measurement of V and of the resistance allows a 
determination of Isc. 
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5. Discussion 
 
We can explain our results by piezoelectricity in nanoparticles produced by the flexoeloectric effect  
[3, 4]. 
 
Centro-symmetric dielectrics are not expected to polarize under mechanical strain. A non-uniform 
strain or the presence of strain gradients can however locally break inversion symmetry and induce 
polarization even in centro-symmetric crystals. This phenomenon is termed fexoelectrictiy [3, 4]. 
 
With reference to Fig. 1, at moderate pressure a nanoparticle is deformed and acquires positive (on the 
stretched side) and negative (on the compressed side) charges. The electric field due to the positive 
charges turns out to be opposite to the contact field at the Schottky barrier. At quite moderate force 
therefore, this field corresponds to a reverse bias and negligible current will flow at the junction. At 
forces of sufficient strength the contact will be through the two sides, so that there will be a current at 
the negatively biased side with a positive potential at the electrode. This current, which is much higher 
than the reverse current, will be driven by the potential V- through the nanoparticle. On traversing the 
junction it will undergo a loop on continuing through the parallel resistance constituted by those 
particles that are in contact with the electrode without being bent. The potential V- will be at around 
its maximum value Vs, and the resistance will be the TiO2 resistance. 
 
 
5.1. Order of Magnitude of the Piezoelectric Constant 
 
The piezoelectric constant d can be defined by the equation 
 
 Q=d*F  (2)
 
where Q and F are the piezoelectric induced charge and the applied stress. 
 
We can derive the value of d from the experimental results on resistance. We note that the resistance is 
determined by all the nanoparticles. Thus, we can write for the conductance change due to the 
piezoelectricity process 
 
  (1/R)= G=n*q2/m*S/L (3)
 
Here, S and L are the total area of the device and L its thickness , n the carrier density change,   the 
relaxation time and m the mass of the carriers and q the electron charge. We can deduce n from the 
induced charge as 
 
 n =Q/qVc , (4)
 
where Vc is the volume of the device. We can thus establish the result 
 
 G/F=e/m*d/L2         (5)
 

So we can deduce d from the slope of the curve in Fig. 6. With typical values L=10µ and =10-13 s we 
find d=1.05 10-11C/N. 
 
The electric potential depends on a single nanoparticle. On referring to a simple geometry of the 
nanoparticle as a parallelepiped it can be written as 
 
 V= Q*L/Aor , (6)



Sensors & Transducers Journal, Vol. 122, Issue 11, November 2010, pp. 102-112 

 110

 
where A is the area of the base, L the height of the nanoparticle and Q the charge on each 
nanoparticle. Q will be 
  
 Q =d*F , (7)
 
where the force on each nanoparticle can be deduced form the total applied stress F as F =F /M, 
where M is the number of generating particles so that 
       
 V= d *F*L/MAor . (8)
 

The quantity V/F can be deduced from the slope of experimental curve in Fig. 5. We find from this 
V/F =2.6 10-2 V/N. For L=10 nm, AL2 and r=10 we obtain d=2.3 10-11 C/N on assuming that 
M=109 . 
 
These values of d compare quite well with the ones predicted for non-piezoelectric particles of similar 
dimensions as a result of the flexoelectric effect. In ref. [3, 4] the value d= 3.9 10-11 C/N is found for 
non piezoelectric nanoparticles at a particle dimension 8 nm. 
 
From the value of d one finds the total charge on the array Q=10-11 F, which corresponds to  
0.1 electron/particle, for F=1 N. 
 
 

Table 3. Piezoelectric parameters of the TiO2 device. 
 

d coefficient (C/N) 10-11 
Charge (electron/particle) 0.1 
Voltage (mV) 1-500 
Capacity (F)  10-10  
Quality factor 10-3 

 
 
5.2. Order of Magnitude of Distortion 
 
According to ref. [7] the piezoelectric voltage can be expressed as 
  
 V = 3T*ym/4Ld        (9)
 
where T is the lateral dimension of the particle, L its length and ymax the maximum lateral deflection. 
From this formula we can estimate ym. On using a typical value V=1V and assuming T L we find that 
ym=10-11 m, which indicates a distorsion of some percent of the unit cell. A value of this order of 
magnitude has been reported in [8] as responsible for a ferroelectric instability in rutile crystals. 
 
 
5.3. Time Response 
 
The capacitance acts as a collector of the piezoelectric generated charge. This capacitance, connected 
with the device resistance is responsible for the current discharge, which will thus be characterized by 
a time constant of the order RC0.1 ms. This number is similar to the one of ZnO nanowire  
devices [2]. 
 
This time can be inferred from energy conservation. The elastic energy introduced by the external 
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force is of the order E=F ym so that it is given by E 10-11 J for ym 10-11m and F=1 N. Since 
the output power is P5 .10-8 W, this output should be delivered in a time t such that P t=E, which 
gives t 0.1 ms. 
 
 
5.4. Number of Current-generating Particles 
 
This is an important parameter which determines a kind of quality factor. Since the total current is 
expected to arise from the generating particles, the maximum current will be obtained if all the 
particles generate current. This is not so, as can be deduced from the number of generating units 109. 
The total planar density of nanoparticles on the surface of device is Ntot10 12 for an area of device  
1 cm2. Therefore the quality factor is 10-3, i.e. there is one nanoparticle per thousand participating in 
the current generation, which could be increased by suitable optimization of the deposition of the TiO2 
film of the device. 
 
 
6. Conclusions 
 
The number of nanoparticles that was active for producing electricity was N 109. As limited by the 
multiple contacts between the nanoparticles and the electrode in the present design, the large number 
of nanoparticles did not produce electricity because of their non-uniformity in height and distribution 
on the substrate surface; thus, the output current was rather small in the present design. These technical 
difficulties could be overcome by an optimized design to improve nanogenerator efficiency. For 
example, nanogenerator efficiency could be improved with the use of patterned electrodes to improve 
the lateral force on the nanoparticles, the patterned growth of high-quality uniform nanoparticle arrays 
matching the design of the electrode and an improved packaging technology to keep a precise control 
on the contacts between the electrode and the nanoparticle arrays. If the grown density of the 
generating nanoparticles could reach the limit of highly compacted nanoparticles ~10 

12/cm2, the output 
power per unit of area could be 10-5 W. Since the power used to operate a device fabricated with one 
nanostructure or nanotube is~10 nW [9-11] such nanogenerator could operate up to 1000 of such 
nanodevices, based on our current study. 
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