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Preface 
 

Every research and development is started from a state-of-the-art review. 
Such review is one of the most labor- and time-consuming parts of 
research, especially in high technological areas as computers and 
software engineering. It is strongly necessary to take into account and 
reflect in the review the current stage of development. Many PhD 
students and researchers working in the same area must make (and do it) 
the same type of work. A researcher must find appropriate references, to 
read it and make a critical analysis to determine what was done well 
before and what was not solved till now, and determine and formulate 
his future scientific aim and objectives. 

To help researchers save time and taxpayers money, we have started to 
publish ‘Advances in Computers and Software Engineering: Reviews’ 
open access Book Series.    

The first volume of ‘Advances in Computers and Software Engineering: 
Reviews’, Book Series contains 6 chapters written by 21 authors from 7 
countries: Brazil, Canada, Palestine, Slovakia, Spain, Taiwan and USA. 

Chapter 1 describes a methodology for performance optimization of data 
parallel applications on heterogeneous computing platforms - complex 
systems composed of heterogeneous multi-core processors and 
accelerators (e.g. Graphic Processing Units and Xeon Phi), connected by 
a hierarchy of communication channels with a focus in the optimization 
of their communication cost. 

Chapter 2 presents a new XPath query aggregation approach based on a 
node region encoding scheme which provides positional information for 
nodes in an XML query tree. Compared with the existing aggregation 
approaches the proposed algorithm can efficiently evaluate the 
ancestor/descendant operator (a//d) and the parent/child operator (p/c) 
between any pair of nodes in XPath queries and can process a complex 
tree-structured query as a single unit without having to decompose it into 
sub-queries and performing a post-processing task.  

Chapter 3 reports the performance improving of load balancing 
algorithm by considering both the structural and the technical load-
balancing factors by proposing a two-stage load-balancing approach. 
The approach, first, designs an overlay network that employs the concept 
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of small world in order to reduce the effect of the structural factors and 
then, applies an improving load-balancing that considers the technical 
factors within the constructed overlay network. Load-Balancing 
Approach for Queues based Systems. 

Chapter 4 presents selected non-standardized data acquisition systems 
nonlinearity test methods. The methods are based on the identification of 
unified error model parameters. These can be measured using non- 
standardized test signals such as triangular and exponential ones.  

Chapter 5 describes an affinity aware scheduler of cluster virtual nodes 
on clouds and reports the simulation of the proposed model. 

Chapter 6 reviews DDoS attack protection in cloud computing and 
software-defined networking. The potential issues under this  paradigm 
as well as opportunities of defending DDoS attacks are also discussed. 

We hope that readers enjoy will this book and it will be a valuable tool 
for those who are involved in research and development in appropriate 
area. 

 

Sergey Y. Yurish,  
Editor, IFSA Publishing   Barcelona, Spain 
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Chapter 1 

A Methodology for Performance 
Optimization of Data Parallel 
Applications on Heterogeneous 
Computing Platforms 

Juan A. Rico-Gallego and Juan C. Díaz-Martín1 

1.1. Introduction 

Modern High Performance Computing (HPC) platforms are complex 
systems composed of heterogeneous multi-core processors and 
accelerators (e.g. Graphic Processing Units and Xeon Phi), connected by 
a hierarchy of communication channels. Such heterogeneity is partially 
due to the necessity of increasing the system performance keeping the 
energy cost at a reasonable level. 

A data parallel kernel is a computationally intensive task conceived for 
being executed by a set of processors, each running the same code on a 
different data region of a global data space. It faces the challenge of 
obtaining as much performance as possible from HPC platforms. Current 
kernels are devoted to numerical linear algebra or signal and image 
processing, as well as to partial differential equation solvers used in 
engineering and physics. Applications built upon one or more of these 
kernels are known as data parallel applications. Hence, from now on we 
will use the terms data parallel application, data parallel kernel, or simply 
kernel interchangeably. 

A computational resource can be a single core, a pair of them, a socket 
or a full node. Also a GPU together with is monitor core, etc. From now 

                                                      
Juan A. Rico-Gallego 
Escuela Politécnica, University of Extremadura, Cáceres, Spain 
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on we understand the term processor as one of these computational 
resources. For executing a data parallel kernel, a possibly multithreaded 
process is assigned to each processor of the platform. Along this chapter, 
the terms computing resource, processor and process actually refer to the 
same thing. 

Each of these processes always needs data from others processes to 
compute its own values. Therefore, the necessity of communication 
appears periodically during its execution. MPI [1] is the standard 
communication interface in HPC and that which we will use here. It 
defines the primitives that a processes needs to interchange messages. 
MPI includes simple point-to-point operations between two processes, 
as well as operations performed collectively by a group of processes, as 
broadcasting a message to the rest of the group. MPI also includes other 
facilities such as file I/O handling, process management, etc. 

Mapping the data space of a kernel to the available processes of a 
heterogeneous platform is certainly a complex problem. The challenge 
is not only to balance the overall computational load of the kernel among 
the available computing resources, but also to optimize the completion 
time of its communications. In current practice, the load allocation is 
determined through a set of thorough tests of a shortened version of the 
kernel on, in turn, a representative subset of the computing resources of 
the target platform. This approach has three main drawbacks:  
1) The programmer has to invest time to design and implement the test; 
2) Each test uses expensive computational resources along a significant 
amount of time, and 3) Often it is hard to correctly extrapolate 
estimations obtained from a simplified application on a simplified 
platform. In this landscape, the contribution of this chapter is to introduce 
a model-based methodology that replaces the mentioned testing tasks of 
the kernel by a fully analytical modeling of its behavior. Furthermore, it 
aims minimizing the global execution time of the kernel in current 
heterogeneous platform, with special focus on the optimization  
of the communications. 

Optimization of computation and communication in data parallel 
applications are usually addressed separately. Regarding the 
computation, two independent techniques are applied. The first one is 
balancing the workload, that is, assigning to each process a data region 
with a size that is proportional to its capabilities. Many possibilities exist 
in this regard. We know each of these balanced region-to-process 
correspondences as a data mapping. The second technique consists of 
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writing code that makes optimal use of the current deep memory 
hierarchies by fighting the so named memory wall, which can limit 
severely the computational throughput. Communication optimization is 
addressed through a set of tests, which search for a data mapping that 
reduces the communication flow in the slower channels of the system, 
usually the network. 

Formal analysis of data communication through Communication 
Performance Models contributes to understand the communication 
complexities in current platforms, with the goal of predicting their cost 
and ultimately improving their performance. Communication 
performance models provide an analytic framework that represents a 
communication as a parameterized formal expression. The evaluation of 
this expression determines the cost of the communication, as function on 
system parameters, in terms of time. Many models have been proposed, 
covering different aspects of the communication. -Lop [7] is a model 
that addresses the challenge of accurately modeling MPI 
communications on HPC platforms, from traditional homogeneous 
clusters, to current heterogeneous clusters composed of multi-core CPUs 
and accelerators. -Lop relies on the concept of Concurrent Transfers of 
data, and uses this concept as a building block to represent the 
communications on hierarchical communication channels, capturing the 
impact of contention and process mapping. 

The methodology mentioned above involves a set of steps. It departs 
from a processor layout π, a relation of the computing resources of the 
platform that will support the application. Each item of this relation 
describes the resource, such as a “GPU g in machine m”, “cores c and d 
of socket s in machine n”, etc. Departing from a deployment π of P 
processors, the general steps to follow are: 

1. Balance the computational load between the processors. In a 
heterogeneous platform the processors have different computing 
capabilities. We say, therefore, that the corresponding processes 
will have different speeds. This step involves the characterization 
of the speeds of the processes by a vector },,{ 10  Psss  . As a 

result, process pi will be later assigned a data region with a size 
proportional to its speed si. Usually, such speed characterization is 
done through benchmarking. 
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2. Partition the data space of the application between the available 
processes by determining the precise geometry of each and every 
data region that outputs a satisfactory load balance. The partition is 
hence described for 1D data spaces by a vector 
d  {xi,wi,0  i  P}, and for 2D space by a vector 
d  {xi, yi,wi,hi,0  i  P}. In this last case the resultant partition 
is often known as a data tiling. 

3. The partition d resultant of step 2 is subject to multiple variations or 
data mappings on π. All of them are modeled and evaluated to 
choose that which minimizes, or at least significantly improves, the 
cost of its involved communication. 

Such steps are discussed in the rest of the chapter. Section 1.2 fairly 
describes the issue of the workload balancing between the processes of 
an application, as well as the partitioning of the data space (steps 1  
and 2). Section 1.3 more exhaustively describes the use of -Lop to 
analytically model, evaluate and optimize communications in 
applications (step 3). Finally, Section 1.4 concludes. 

1.2. On the Optimization of the Computation 

In a homogeneous platform, a set of identical processors connected by a 
network, the speed of the processes of a data parallel application is 
identical, and hence its computational load is evenly distributed. In a 
heterogeneous platform, however, the processes present different speeds 
due to the diversity of capabilities of their related resources, currently 
multi-core CPUs, GPUs, Xeon Phis, etc. For a data parallel application, 
achieving the optimal performance out of a heterogeneous system is a 
demanding task that requires to unevenly distributing the application 
workload between the processes. The objective is balancing the 
computational load, preventing faster processes to wait for slower ones 
at communication points. 

The computational load balancing can be formulated as a partitioning 
problem [3]. Departing from n independent computational units of equal 
size composing the data space, the goal is to distribute them among a set 
of P processes },,{ 10  Pppp  , in a way that the workload will be 
(probably unevenly) balanced. The processes are characterized by their 
speeds },,{ 10  Psss  , where si is a constant describing the number 
of computational units the process is able to perform by time unit. Such 
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speed values are usually obtained by benchmarking the processes with a 
simplified version of the final application computation. More advanced 
characterization of the speed of a process exists [4], as a function of the 
problem size s(x), hence including the impact of the memory hierarchy, 
operating system paging policy, etc. in the computational cost. Let 

},,{ 10  Pnnn   be the number of computational units assigned to the 
processes. Each process pi has an execution time ti = ni/si. The overall 
execution time of the application is given by the slower process, that is, 
that with the maximum ti, hence, an optimal workload distribution 
minimizes the expression max ti, 0  i  P . 

FuPerMod [5] is a software tool that covers the first two steps of the 
methodology following different state of the art approaches and 
algorithms. It generates a partition from a 1D or a 2D data space for P 
processes running on a high performance heterogeneous platform. The 
developer provides the tool with a benchmarking code and provided 
processor layout π. First, FuPerMod generates the per-process speed 
characterization s by executing the benchmark. Afterwards, FuPerMod 
produces the partition d. One of the algorithms considered in FuPerMod 
is the well-known SUMMA parallel matrix multiplication kernel, which 
calculates the large scale C = A × B problem in a HPC platform: load 
balancing decides how many data points in the matrices are going to be 
assigned to every process in proportion to its speed, and partition decides 
what specific data points in rows and columns are going to be assigned 
to a process for computation. FuPerMod produces partitions in 2D 
rectangles with an area proportional to the assigned process speed, tiling 
the full matrix. This concrete problem has been demonstrated to be  
NP-Complete [6], so a near-optimal distribution is achieved [4]. 

The main limitation of FuPerMod is that its solution partition d does not 
consider the cost of the process communications between regions, a fact 
that opens research opportunities to the third step of the methodology  
[4, 6, 10]. Although in a balanced partition the cost of the communication 
is usually lower than that of computation, it still is an important subject 
of optimization, which can be faced by analytical approaches [10]. 
Departing from a balanced partition produced by the FuPerMod tool, the 
rest of the chapter develops an analytical approach through the -Lop 
communication performance model. 
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1.3. Modeling Communications with -Lop 

This section describes the recently proposed model -Lop [7]. Simple 
modeling of point-to-point messages and collective operations in 
homogeneous systems is introduced. Next we show -Lop in action, 
modeling a broadcasting algorithm under two MPI rank mappings in 
order to choose at run-time the one with lower cost. We finally discuss 
the method to build the parameters of the model. 

1.3.1. An Introduction to -Lop 

As any other model, -Lop predicts the cost of inter-process 
communications in terms of time. The model has been proven to be 
accurate enough to estimate the cost of point-to-point and collective 
communication patterns in HPC platforms [7-9]. -Lop acknowledges 
the concurrent transfer as the building block of a point-to-point 
transmission. It captures the fact that a channel bandwidth shrinks when 
transfers (data movements between memory buffers) are concurrent, a 
feature usually ignored in other models, but still key in the current 
platforms of multicore nodes. 

The cost of a point-to-point message transmission is modeled using two 
parameters. The Overhead o(m) represents the startup time or time 
needed to start the injection of data in the channel from the invocation of 
the operation. The transfer time L(m,) is the time invested in each one 
of the transfers (data movements) composing the transmission. The  
-Lop expression describing the message transmission cost is 

 
1

0

( ) ( ) ( , )
s

i

T m o m L m 




  , 

with m the size of the message and s the number of transfers the message 
needs to reach the destination. The overhead depends on the message 
size, because communication libraries as MPI provide different methods 
with different startup times depending on the length of the message to 
transmit. For instance, the use of the eager protocol for small messages 
and a rendezvous protocol to avoid flooding the receiver for larger 
messages. Hence, it can be considered a step function. The transfer time 
depends on the message size m, but also on the number of concurrent 
transfers progressing concurrently , which lowers the effective channel 
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bandwidth. Consider the following scenario: in a multicore node, there 
could be several processes communicating in pairs. If all the 
transmissions are simultaneous, as happens in a collective, the physical 
memory bandwidth is reached. The net effect is that the bandwidth 
available for each pair of processes is only a portion of the total. Models 
ignoring this fact lead to low scalable predictions on current platforms. 
Fig. 1.1 represents the cited scenario of a shared communication channel, 
comparing a single message transmission with two concurrent message 
transmissions of the same size. Note that the data movements progress 
through an intermediate shared memory buffer, leading to transmissions 
composed of two transfers. Following expressions compare analytically 
both costs:  

( ) ( ) 2 ( ,1)leftT m o m L m    and ( ) ( ) 2 ( ,2)rightT m o m L m   . 

 

Fig. 1.1. Two message transmissions (isolated and concurrent) represented  
as the addition of transfers in a shared memory communication channel. 

The definition of the transfer time L takes into account that k concurrent 
transfers have a cost between that of a single transfer and that of k 
sequential ones, that is, ( ,1) ( , ) ( ,1)L m L m k k L m   . As well, as 
assumed by most models, the transfer time cost grows linearly with the 
message size, that is ( , ) ( , )L k m k L m    . 

-Lop adopts a compositional approach for representing the concurrency 
of full point-to-point transmissions, by using the concurrency operator 
||. As an example, the cost of the pair of concurrent transmissions shown 
at the right side of Fig. 1.1 can be represented as 

( ) || ( ) 2 || ( ) ( ) 2 ( ,2)T m T m T m o m L m    . Note how the amount of 
concurrent transmissions represented using the concurrency operator is 
propagated to the  parameter of the transfers. 
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MPI collective operations simplify the development by providing 
communication patterns for a group of processes. They usually have 
positive effect in the performance of an application. Communication 
library designers deal with the complexity of its implementation, and 
usually provide with different algorithms for the same collective, with 
an election based on variables as the message size and/or number of 
processes. Formal analysis and modeling of such collectives allow 
understanding the behavior and optimization points of the application, 
and the performance of the collective itself. 

Following, -Lop is used to model a simple collective operation: a 
broadcast implemented using the binomial tree algorithm [8]. The 
operation is defined in the MPI standard as MPI_Bcast. Fig. 1.2 shows 
the intermediate deployment of the messages in the binomial tree, from 
the process called root (ranked as 0 in the example) to the rest of the 
processes in the group (P = 16) in a set of stages (

�

log2 P  4). 

 

Fig. 1.2. A binomial tree broadcast collective algorithm. A process called root 
(p = 0) sends a message to the rest of processes in the group (P = 16).  
The algorithm executes in log2P = 4 stages, with the number of concurrent 
transmissions doubling in each stage. 

The next cost expression allows estimating the cost of the algorithm for 
different number of processes P and message size m is. Note the ability 
of -Lop to model the contention in the channel, by making the 
transmissions of bottom stages to perform worse, because a growing 
number of them have to share the channel bandwidth. 
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Finally, channels are denoted in -Lop by the superscript {0,1, }c   , 
where c = 0 is the channel with a highest performance. In a multi-core 
cluster, c = 0 refers to shared memory, and c = 1 to network. T c (m) 
represents the cost of a transmission through the channel c. 

1.3.2. Assessing the Optimization of Collectives 

A simple example of the usefulness of -Lop is presented next. Let be a 
data parallel kernel communicating with MPI. Each of the processes of 
the kernel has an associated MPI rank. This association is often known 
as the MPI rank mapping. The point is that changing the MPI rank 
mapping can increase significantly the performance of a collective. Next 
we illustrate how -Lop aids to make of such decision before invoking a 
binomial broadcast, based on the cost of primitive under two widely used 
MPI rank mappings, sequential and round-robin. Fig. 1.3 represents a 
platform of 2M   nodes of 8Q   cores per node, for a total of  
16 processing units. Each shown number is the rank of the processor it 
labels. Note that Sequential mapping has the property that a processor 
labeled with rank r belongs to the node /r Q , while under Round Robin 
a processor labeled with rank r belongs to the node modr M . The  
-Lop costs under the two mappings are represented in the Table 1.1. 

Assuming 1 0( ) ( )T m T m  and || ( ) || ( )c ck q k T m q T m   , the cost 
expressions in Table 1.1 reflect the necessity of choosing the correct 
mapping even in a simple platform with only two nodes. In this case, 
sequential mapping behaves better (lower cost due to lower contention 
in the network) than Round Robin. The fact is that a collective operation 
behaves better under a specific mapping. Hence, an off-line evaluation 
of the execution environment based on analytical modeling of the 
communication can produce an important performance improvement. 

Table 1.1. Binomial tree cost in a multi-core cluster with two nodes and eight 
cores per node. 

MPI Rank Mapping Binomial broadcast cost expression 

Sequential Mapping 1 0 0 0( ) 2 || ( ) 4 || ( ) 8 || ( )T m T m T m T m    

Round Robin Mapping 0 0 0 1( ) 2 || ( ) 4 || ( ) 8 || ( )T m T m T m T m    
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Fig. 1.3. Sequential and Round Robin mapping in a multi-core cluster of two 
identical nodes of eight cores per node. A binomial broadcast algorithm is 
performed in this machine. Bold lines represent network communications, while 
thin lines mean the better performing shared memory. The -Lop analysis of 
Table 1.1 determines the cost of the broadcast under both mappings. 

1.3.3. Building the Model Parameters 

In any communication performance model, the method to choose and 
assess its parameters is critical to reach a good level of approximation to 
the actual costs. Of course, the value of these parameters is platform 
dependent and application independent. The issue here is that they have 
to be estimated with precision in order to achieve scalability in the 
predictions. A poor methodology to estimate these parameters leads to 
unrealistic and even self-defeating cost estimations. 

In -Lop, the parameters have to be built per channel, e.g. shared memory 
and network. The overhead o is measured using point-to-point 
transmissions for growing message lengths m, primarily to capture the 
cost incurred by the protocol of the underlying communication library, 
being eager, rendezvous or any other, which switches after a given 
threshold m. Source and destination processes are placed in the same and 
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in different nodes to measure the overhead of shared memory and 
network respectively. 

For the transfer time L, -Lop proposes a methodology based on a 
collective operation like that of Fig. 1.4, a ring between four processes 
composed by MPI_Sendrecv. An increasing number of processes 
exhausts the communication channel to get L(m,) for a range of message 
size m and number of concurrent process . Actually, the parameters are 
measured for a set of discrete m values, and the final transfer time 
function is interpolated. 

 

Fig. 1.4. Ring operation designed to measure the transfer time in -Lop. 

Due to the importance of the accuracy in the parameter measurement, a 
method for a better fitting of L(m,) can be used after their measurement. 
A linear regression method is proposed in [7] for improving the accuracy 
of the measurements of L(m,), specially for short messages, where the 
contention is difficult to ensure. An over determined linear system is 
posed, where each equation is the -Lop cost expression of a given 
operation, equaled to its measured real-life cost. The target L(m,) terms 
will appear now in more than one equation and the best fitting value  
is obtained. 

Albeit of other type, statistical treatment of the data applies also to the 
building procedure, which, for instance, must perform a high number of 
repetitions until a satisfactory confidence error is achieved, avoiding the 
simpler statistical mean, more sensitive to outliers. 

1.4. Optimizing the Communications of Hybrid Kernels 

A data parallel kernel running on a heterogeneous platform is often 
known as a hybrid kernel. This section presents -Lop extensions for 
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heterogeneous platforms and describes the optimization of a Wave2D 
hybrid kernel. 

Obtaining the optimal performance of a heterogeneous platform requires 
to unevenly distributing the computational load of a data parallel 
application between processes with different speeds. In these scenarios 
the amount of data to communicate by each process varies, and 
concurrent transmissions through different communication channels 
simultaneously occurs, which leads to more complex cost expressions 
than those in homogeneous systems previously discussed. 

Expressions appearing in homogeneous and hierarchical modeling of 
point-to-point and collectives are basically of the following two types: 
1) expressions in the form n ||T c (m) representing the cost of n 
concurrent transmissions of a message of size m through a 
communication channel c, and 2) T c (m1) || T c (m2 ), representing the 
cost of a sequence of two transmissions of different message sizes 
through the same communication channel. The expressions to model 
communications in heterogeneous systems become more complex. 

-Lop provides with extensions to evaluate these types of expressions 
[9], which shuffle concurrent and sequential transmissions of different 
message lengths progressing through the same or different 
communication channel, e.g. T c1(m1) || T c 2 (m2 ) . Anyway, expressions 
of actual applications rapidly become complex enough to require an 
automatic evaluation. 

The -Lop toolbox [2] is a package that provides with a C function 
interface to automatically generate the communication cost expressions 
of a data parallel kernel. Their inputs are a data partition d and the -Lop 
parameters built for the platform. The toolbox provides with facilities to 
efficiently evaluate the communication cost of a set of partitions, leading 
to an optimal election. 

The cost of the communications of a hybrid kernel derives from 1) The 
built partition d; 2) The data mapping on the processors platform, which 
decides the channels used for their communication, and 3) The type of 
communication primitives used, being collectives or point-to-point 
transmissions. Regarding the second and third issues, instead of running 
a set of thorough test to find the optimal data mapping in the platform, 
the analytical approach based on -Lop analyzes, estimates their costs 
and optimizes the communications. 
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Following, a hybrid kernel is evaluated and optimized as an example of 
data parallel applications in heterogeneous HPC platforms. The kernel is 
a wave equation solver, from now on named Wave2D. Its 2D data space 
is an N×N matrix of double precision real values. The left side of Fig. 1.5 
shows this matrix at a given step of the algorithm. Regarding 
computation, the kernel uses the technique of finite differences to 
numerically solve the 2D wave equation: 
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Fig. 1.5. Left: visualization of discrete solution u(x,y,t) of the Wave2D equation 
in an N×N data mesh at the iteration (or step) t = 102, for particular initial and 
boundary conditions. Right: a data partition of the data space between P = 8 
processes running on two nodes, represented with grey and white backgrounds, 
with the halo sending of process p = 1. Also shown is the stencil to update the 
data space (New matrix) from the two previous instances in time (Cur and Prev). 

We have set up an experimental platform composed of two nodes, each 
with two GPUs, connected by a network and P = 8 processes. Hence, the 
processes communicate through shared memory or network depending 
on their location. Inside each node, each process may run on a different 
type of resource, either a set of cores or a GPU. In any case the FuPerMod 
tool provides a load-balanced partition following a column-based 
approach [6], as shown at the right side of Fig. 1.5. As we are now 
interested in the cost of the communications, the color of the data region 
identifies the machine as the location of the process, not the specific 
processor. Being a FuPerMod output, this partition does not take into 
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account the communication cost derived from the usage of different 
channels, but only the relative speed of the processes. A question arises: 
could we find a data mapping more efficient in terms of its 
communication costs? 

Answering this question requires studying the kernel more in depth. 
Along time t, u(x,y,t + 1), represented by the matrix New, is generated 
from its previous instances u(x,y,t) and u(x,y,t – 1), represented by Cur 
and Prev matrices respectively, according to the following stencil (at the 
furthest right of Fig. 1.5): 

 

 2

2 2

2 2

( , ) 2 1 2 ( , ) Pr ( , )

( 1, ) ( 1, )

( , 1) ( , 1).

New i j c Cur i j ev i j

c Cur i j c Cur i j

c Cur i j c Cur i j

   

   

  

 

Every data point in matrix New is calculated as a combination of the 
neighbourhood points in matrix Cur Hence, calculating the boundary 
points of the region assigned to a process at the step t + 1 requires a 
previous communication stage of the needed data from neighbourhood 
processes at step t. Right side of Fig. 1.5 shows how processor p1 
communicates its boundary data to his neighbours. 

As the computation is (unevenly) load balanced, all processes come into 
the communication phase at the same time. Hence, all processes 
interchange their boundaries simultaneously. From this assumption, we 
can derive a communication cost expression of the application: 
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Communication cost of process p is represented by  p . All of the 

processes communicate concurrently, so the total cost   is calculated 
using the concurrency operator || for every process communication over 
t steps. A process p transmits its boundary data to its neighbour processes 
(the set p ) using the channel c(i) for transmitting the message of size 

m(i) to the neighbour i. The transmissions of a process to its neighbours 
are accomplished sequentially, hence the summatory. Right side of the  
Fig. 1.5 shows the transmissions from p = 1 to its neighbours
p  {2,4,3,6,0,5}, with a cost per iteration of: 
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This cost expression, which only represents the communications of one 
process (p1), is indeed complex enough to require evaluation using an 
automatic tool, as we will see. 

Once modeled the communication cost of Wave2D, the above question 
about reducing this figure turns into a more specific one: How could we 
re-arrange the regions in the data space to reduce the network 
communication? Analytical modeling allows answering affirmatively to 
such question by modeling and estimating the cost of all possible 
rearrangements (data mappings). Nevertheless, this procedure is 
unfeasible when the number of processes grows, because the number of 
combinations grows exponentially. In practice, two simplifications help 
us here: 1) using heuristics (that highly depend on the application and its 
specific communications) to facilitate the data mapping decisions, and 
2) using an automatic tool to efficiently modeling and evaluating each 
data mapping. 

A straightforward optimization decision for Wave2D is shown in  
Fig. 1.6.  

 

Fig. 1.6. Switch of data mapping, by rearranging the data regions assigned  
to processes in the 2D mesh (data space) in such a way that network 

transmissions have been minimized. 
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It is based on the assumption that rearranging as close as possible the 
regions assigned to processes running on the same node increments the 
shared memory communication, and hence, it decreases the network 
communication, more expensive in terms of time. Note that the complete 
data space is tiled with the rectangles assigned to each processes, so that 
every process performs the same amount of computational work on a 
different set of data points. Hence, the workload balance does not 
change. 

The key feature of the -Lop library is that it allows evaluating the two 
data mappings in Fig. 1.6 automatically. Pseudo-code in Table 1.2 gives 
a flavour of the library facilities.  

Table 1.2. Pseudo-code for modeling and evaluating the communication cost 
the Wave2D kernel using the -Lop library. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

int P = 8; 
int nodes = {0, 1, 0, 1, 0, 1, 1, 1}; // Node mapping 
Process *p[P]; 
int *[P] 
for rank in {0, P-1}: 
p[rank] = new Process (rank, nodes[rank]); 
for rank in {0, P-1}: 
[rank] = new Neighbors (p); 
TauLopConcurrent *conc = new TauLopConcurrent (); 
for rank in {0, P-1}: 
TauLopSequence *seq = new TauLopSequence (); 
for dst in {[rank]}: 
m = getMsgSize (p, dst) * sizeof(double); 
seq->add (new Transmission (p[rank], p[dst], m)); 
conc->add(seq); 
TauLopCost *tc = new TauLopCost (); 
conc->evaluate (tc); 
double t = tc->getTime (); 

 

Line 2 represents the mapping of processes to nodes, numbered 0 and 1, 
a subset of the process deployment π. Lines 3-8 create the array of 
processes, represented by a rank number and its mapping node, and its 
neighbours (rank). Neighbors() function returns different values for each 
data mapping, so the code is data mapping independent. For instance, in 
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Fig. 1.6, neighbours of process p5 change from 5 {0,1,2}   to 
'
5 {0,3,7}  . Note that the number of data points in its boundaries for 

transmitting through the network to processes in 5  is 76. However, this 
number reduces to 40 in '

5 . Lines 9-15 compose the cost expression, 
using the TauLopConcurrent and TauLopSequence objects. All 
Transmissions added to a TauLopSequence object will be evaluated 
under the assumption that they progress sequentially. In the other hand, 
all TauLopSequence objects added to a TauLopConcurrent object will 
be evaluated under the assumption that they progress concurrently, 
applying the transfer time parameter values for specific m and . Note 
that all transmissions from the same process are stored in a 
TauLopSequence object, while transmissions from different processes 
are concurrent, and hence stored in a TauLopConcurrent object, 
according to the communication modeling. Each transmission is carried 
out between two Processes and its size is specified in bytes. The 
communication channel used for each transmission is internally figured 
out from the node location obtained from the processes. Finally, lines  
16-18 evaluate the cost expression stored in variable conc returning a 
TauLopCost value, which contain the time in seconds. 

For evaluating a cost expression, the parameters of the model must be 
previously provided to the library. Fig. 1.7 shows the functional scheme 
of the -Lop toolbox. In a typical optimization procedure, inputs are  
1) The mapping of process to node; 2) The data mapping object of 
optimization d, and 3) The parameters of the model built for the target 
platform. The output is a new data mapping d' which minimizes the 
communication cost. 

1.5. Conclusions 

This chapter presents an optimization methodology for MPI-based data 
parallel applications running on complex heterogeneous platforms, with 
a focus in the optimization of their communication cost. The key benefit 
of this methodology is that allow engineers and developers to off-line 
analyze and estimate the cost of the communication costs with a good 
level of accuracy, and even more important, without wasting time and 
resources in the design, implementation and execution of tests for trying 
to figure out an optimal configuration of the application. 
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Fig. 1.7. Functional scheme of the -Lop toolbox. 

The methodology is presented through several examples, which use two 
tools freely available, FuPerMod and -Lop. FuPerMod is an 
environment that includes the utilities to benchmarking process speeds, 
that is, the computation capabilities of the processes running the 
application. Based on its relative speed results, FuPerMod outputs a data 
mapping of unevenly sized regions, ensuring that the workload is 
balanced between target processing units of uneven capabilities, as are 
the current multi-core nodes and their attached accelerators. 

-Lop is an analytical model with a high level of expressivity and 
accuracy that allows modeling and evaluating the cost of 
communications performed by numerical kernels and other applications 
running on heterogeneous platforms. The main characteristics of -Lop 
are, first, the capability of capturing the bandwidth shrink experimented 
by a communication channel when several transmissions progress in it 
concurrently and, second, capturing the influence of the process-to-node 
mapping, which determines the channels used to transmit data, both with 
a critical influence on the overall communication cost of an application. 
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In addition, the procedure of -Lop parameters estimation is described. 
Such procedure put the focus on the accuracy in the estimation of 
parameters, a key challenge to improve the accuracy in the estimations 
performed by the model. 

In our methodology, -Lop departs from the data mapping returned by 
FuPerMod. Armed with a procedure that automates the process of 
evaluating large and complex communication cost expressions, the 
programmer enters into a new scenario where she can devise new 
strategies to search for new data mappings, with better or even optimal 
communication costs. Taking as inputs the initial data mapping, the 
process-to-node mapping and the parameters of the model, we have 
shown that simple code upon the -Lop library primitives which can 
quickly evaluate large data mapping domains, and essential help to 
further developing optimization strategies and heuristics. 
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Chapter 2 

An XPath Query Aggregation Approach 
for XML Publish/Subscribe Systems 

Yang Cao, Chung-Horng Lung and Shikharesh Majumdar2 

2.1. Introduction 

Extensible Markup Language (XML) [1] is a standard for data exchange 
and representation among heterogeneous systems. XML has been 
applied to various applications, e.g., network management [2, 3] and 
cloud configuration management [4, 5]. An XML-based approach can 
bring advantages in the construction of models for data representation, 
information exchange among the agents of the grid [6]. XML 
publish/subscribe (pub/sub) systems are also XML applications. In a 
pub/sub system, subscribers specify their interests (called subscriptions 
or queries) and demand a particular subset of publication messages on 
the system. The terms subscription and query are used interchangeably 
in this work. The content producers, also called publishers, deliver 
publication messages to subscribers through content providers which 
mostly also provide network services to identify the registered 
subscribers and correctly deliver publication messages to subscribers. 

The operations of XML pub/sub systems are often carried out using an 
application-layer service that consists of specific brokers for delivering 
XML publication messages and managing subscriber queries. In an 
XML pub/sub system, subscriptions are represented by XPath queries 
[7], whereas publication messages are in the form of XML documents. 
One of the main challenges for an XML pub/sub system is to efficiently 
manage a large number of subscriptions. Therefore, query aggregation 
becomes a crucial technique in dealing with the challenge of a very large 
subscription space. But the query containment problem [8, 9], a part of 
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query aggregation, is different from the XML document matching 
problem [10-12]. XPath query aggregation can reduce the size of the 
query tree that is stored at each XML broker and can reduce the 
processing time for matching a publication message with queries stored 
in the query tree. This has a significant impact on the publication 
message delivery time to interested subscribers. 

XPath query aggregation algorithms are based on traversing of the query 
tree node by node in order to capture the containment relationship 
between a new query and the existing query tree [13-16]. A node in an 
XML message can be an element node, an attribute node or a text node, 
etc. On the other hand, a node in an XPath query q can be a location step 
of q. The first issue with these existing approaches is that a node by node 
comparison on trees is time consuming, especially for 
ancestor/descendant relationships or for complex and deep XML data. 
Secondly, the operation needs to be performed at each broker along the 
message delivery path using the application-layer multicast model. 

To mitigate the problem of the expensive tree traversal operation, node 
labeling or indexing schemes, e.g., [17-20], have been proposed for 
efficient processing of XML data having a deep hierarchical and 
complex structure. These schemes can be used to proficiently determine 
the ancestor/descendant or the parent/child structural relationship 
between two nodes, which is efficient for highly-nested XML data. With 
the interval-based labeling scheme, a node n in the query tree is 
represented by an interval [a:b] label, where each label represents a range 
or region from a to b, and a is the pre-order value for the node n and b is 
the number that is larger than all of a’s descendants. The labels determine 
structural relationships between two nodes by comparing the covering 
intervals for two node labels. The region code scheme [21] is an  
interval-based labeling scheme that assigns left, right, and level position 
numbers to each node in a tree. Instead of traversing the query tree node 
by node, using the region code scheme can improve the performance by 
quickly identifying ancestor/descendant and parent/child structural 
relationships. The region code scheme has been adopted in TwigStack 
[21] to identify the matching between twig queries (queries with 
branches) and the XML documents in XML database systems. 

A great deal of research has been devoted to effective indexing schemes 
for XML database systems. There are similarities between XML 
database systems and XML pub/sub systems. XML query aggregation 
plays a crucial role for the efficiency of XML pub/sub systems. 
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Therefore, the objective of this chapter is to investigate an existing and 
efficient indexing scheme (region code) in XML databases and adapt it 
to XML pub/sub systems for query aggregation in order to improve the 
efficiency of XML pub/sub systems. 

This chapter presents a novel XPath query aggregation approach with the 
application of region codes (see Section 2.3.1). Our approach supports a 
rich subset of XPath query language grammars (XP) that are frequently 
used in real-life applications: the parent/child operator (/), the 
ancestor/descendant operator (//), and the predicate operator ([]). Our 
proposed approach consists of two primary algorithms: containee and 
container. The containee algorithm is used to identify the set of queries 
in an existing query tree that are contained within a new user query. The 
container algorithm, on the other hand, is used to identify the set of 
queries in the existing query tree that covers the new user query. With 
the proposed query aggregation approach, new queries can be efficiently 
merged with the existing query tree. The query tree size at each broker 
can be reduced or confined, which in turn can decrease the time for XML 
message filtering which is required in identifying interested subscribers. 
Our algorithm may also be used in other XML applications that have to 
deal with a large number of XPath expressions. 

A preliminary study of XPath query aggregation with region code was 
presented and simple examples were used in [22] to demonstrate the 
feasibility of region code. In comparison to [22], this chapter presents 
other related algorithms and explains those algorithms in much more 
detail. Specifically, significant extensions to the algorithm in terms of 
building region code, maintaining a global query index tree, and an 
analysis of the time/space complexity of the algorithms are included. 
Moreover, performance analysis for those extensions has been 
conducted. The primary contributions of this chapter include: 

 An extension of the region coding scheme to query aggregation for 
XML pub/sub systems, including both the containee and container 
algorithms, that is used to determine the containment relationship of 
a new query and the existing aggregated queries. In our containee 
algorithm, the source tree is the new query and the target tree is the 
existing query set. On the other hand, in our container algorithm, the 
source tree is the existing query set and the target tree is the new 
query. In addition, we refine the containee algorithm in [22] to handle 
more complex cases between a parent node and a child node. 
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 The proposed approach processes an XPath query as an individual 
entity in a bottom-up fashion and uses a chain of linked stacks to 
represent partial matching results for root-to-leaf query paths. The 
benefit of this approach is that there is no need to split a  
tree-structured query into a set of single paths. Therefore,  
post-processing for branch node matching is removed in this 
approach, which results in higher system performance. 

 A thorough experimentation for performance comparison of the 
proposed query aggregation scheme and an existing well-known 
query aggregation method XSearch has been conducted. We compare 
varying number of parameters and metrics between two approaches, 
i.e., processing time for varying number of queries (up to  
100,000 queries), parsing time for XPath queries, building time for 
global query tree, building time for region code and label lists, and 
space usage analysis. 

The rest of this chapter is structured as follows. Related work is 
presented in Section 2.2. The proposed approach is described in  
Section 2.3 and the performance evaluation is presented in Section 2.4. 
Section 2.5 presents our conclusions. 

2.2. Related Work 

This section first describes the primary components for XML pub/sub 
systems in Section 2.2.1, including the major differences between the 
XML query aggregation and XML filtering operation. Then,  
Section 2.2.2 highlights query containment and homomorphism, two 
crucial operations for query aggregation, including a summary of 
existing approaches and their limitations. Some approaches that can 
improve the performance of query aggregation are then discussed in 
Section 2.2.3. Finally, Section 2.2.4 describes two closely related 
techniques, XSearch and TwigStack, in more details. 

2.2.1. Main Functional Components for XML Pub/Sub 
Systems 

An XML pub/sub system matches publisher’s XML messages (or simply 
messages) against a large number of user subscriptions and delivers 
messages to matched subscribers across the network. The most common 
model for XML pub/sub systems is the overlay model in which a set of 
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application-layer XML-capable brokers are deployed and managed by 
content providers to support the service. XML pub/sub systems have 
three main functional components: filtering of XML publication 
messages from the publishers, delivery of XML publication messages 
across the network to matched subscribers, and aggregation of XPath 
queries submitted by subscribers at specific XML brokers. 

XML filtering and matching algorithms have been studied extensively, 
e.g., [15, 23, 10, 24, 11, 12, 25-31]. The primary task of an XML filtering 
and matching technique is to identify the registered subscribers for an 
XML message or XML document published by a content provider. When 
an XML broker receives an XML publication message (also called XML 
document), the XML filtering engine matches the arriving XML 
document with user XPath queries to determine the matched queries. 
Yfilter [12] is a well-known XML filtering and matching technique and 
has been widely studied in the literature and used in practice. Various 
XML message delivery protocols have been reported in [13, 14, 32-38]. 
The application-layer multicast model for XML delivery is the most 
commonly used approach to reduce the number of delivery messages 
from the publisher to subscribers [12]. 

This chapter focuses on XPath query aggregation. XPath query 
aggregation deals with a different problem in comparison to that handled 
by XML filtering and matching techniques. XML query aggregation 
deals with grouping of related user queries and management of the 
aggregated query tree. The main objective of query aggregation is to 
identify the containment relationship for a new query and existing 
queries and merge the new query with the existing queries. Hence, 
identifying the location to insert the new query into the query tree is 
essential for query aggregation. The efficiency of the XML query 
aggregation operation is critical for the overall performance of the X 
systems, because the number of XPath queries can be very large and an 
XML query tree can be highly-nested and contain complex operators, 
e.g., *, //, and value predicates. Effective XPath query aggregation can 
reduce the number of queries to be filtered [13-16, 32, 33, 39, 40, 8, 41]. 
Further, the query aggregation operation is performed at each 
application-layer XML broker used in a commonly used overlay 
multicast model [23, 10, 12, 26-31]. Therefore, effective query 
aggregation is critically important for the overall system performance. 



Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1 

40 

2.2.2. XML Query Containment and Homomorphism 

XML query containment Identifying the containment relationship 
between a query and an existing set of queries is a key function in query 
aggregation. The XPath containment relationship is defined as follows 
[40, 8, 41]: 

Definition 1: “For two XPath subscriptions p and q and an XML 
document t, a containment (partial order) holds if every XML document 
t that matches p also matches q (denoted p ⊆ q).” 

The complexity of XPath query containment is discussed in [40, 42]. 
Miklau and Suciu [40] proved that the containment problem for any 
combination of two operators in the set of {*, //, []} has a complexity of 
PTIME. For XPath containing * and // operators (represented by  
XP ∗, //), the containment problem is equivalent to the string matching 
problem; for XP [], //, there is a polynomial time containment algorithm; 
for XP [], ∗, a polynomial time containment algorithm follows from classic 
results on acyclic conjunctive queries. Miklau and Suciu also prove the 
containment problem of XP [], ∗, /, // queries are co-NP complete. In [42], 
Wood studied the problem of XPath query containment under Document 
Type Definition (DTD) constraints and showed that the containment 
problem could be decided in polynomial time. In [41], Neven et al. 
discussed the complexity of the containment of various types of XPath 
queries in the presence of disjunction, DTDs and variables. The 
complexity of almost all decidable XPath queries lies between co-NP 
and EXPTIME. Although the complexity is high, the size of XPath 
expressions is rather small [41]. 

Homomorphism Given two XPath subscriptions p and q, in order to 
check containment p ⊆ q, the exhaustive approach of checking  
p(t) → q(t), meaning if p(t) is covered by q(t) for all XML trees t, is not 
practical because the number of comparisons can be an exponential 
function of the number of trees t. Practical techniques for checking query 
containment are based on: canonical model, homomorphism, automata, 
and chase [40]. All these techniques use a simple fact that p ⊄ q if there 
is a counter-example, i.e., a tree t such that t contains p but t cannot 
contain q [8]. A canonical model restricts the search space to canonical 
trees with a similar shape to a pattern p. Homomorphism finds a 
homomorphism from p to q. The automata-based technique constructs 
two tree automata and checks containment between the languages 
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defined by the automata [8]. The chase technique translates the XPath 
queries into relational queries and uses the relational chase method. The 
definition of homomorphism is presented as follows [40]: 

Definition 2: A homomorphism is a function h: nodes(p′) → nodes(p) 
between two patterns p′ and p. A homomorphism should satisfy the 
following conditions: 

 h(root(p′)) = root(p); 

 For each x ∈ node(p′), label(x) = * or label(x) = label(h(x)). 

For each x, y ∈ node(p), if (x, y) is a child edge in p′, then (h(x), h(y)) 
must be a child edge in p; if (x, y) is a descendant edge in p′, then  
(h(x), h(y)) must be a path in p of length ≥ 0, which may include child 
edges and/or descendant edges. The length of a path here is defined to be 
the number of intermediate nodes between x and y. For example, if  
(h(x), h(y)) is a path of length 0, then h(x) is the parent of h(y). 

Homomorphism involves both a label match and an edge match. In 
XML, an edge can be either a child edge or a descendant edge. A child 
edge exists between two nodes x and y if and only if x and y have a  
parent-child relationship. A descendant edge exists between two nodes x 
and y if and only if x and y have an ancestor-descendant relationship. 

Homomorphism is a sufficient but not necessary condition for 
containment. Homomorphism cannot identify the complete answer for 
containment among XPath subscriptions. The exception case is that two 
subscriptions have a containment relationship but do not have a 
homomorphism relationship. If two queries have a containment 
relationship but do not have a homomorphism relationship, then an XML 
pub/sub system would forward unnecessary messages for query routing. 
However, this would not affect the system correctness. A 
homomorphism between two XPath queries can be found in polynomial 
time and the time complexity for checking the existence of a 
homomorphism from p′ to p is O (|p|2|p′|) [40]. Fig. 2.1 shows a simple 
example for containment and homomorphism. In this example, there is a 
homomorphism between query p′ and p and also p ⊆ p′. 

The concept of homomorphism has been adopted by several researchers 
for XPath query aggregation. Chand et al. [13, 11] designed an XPath 
query aggregation algorithm, called XSearch. XSearch builds a 
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factorization tree to share common prefixes among queries. 
Homomorphism mapping is used to identify the containment 
relationship between the new query and the existing queries. Yoo et al. 
[14] proposed another XPath query aggregation algorithm. Twig  
(tree-structured) queries are decomposed into a set of paths/branches. A 
query index tree is built and share common prefixes among query 
paths/branches. Homomorphism mapping between branches is then 
validated. Li et al. [15] proposed an XPath query aggregation algorithm 
that splits a twig query into paths/branches and performs a containment 
check for paths/branches. Homomorphism is used to identify the 
containment relationship. Fu and Zhang [16] presented an  
automata-based algorithm to check the containment relationship between 
XPath queries. Homomorphism is determined through running automata 
with an input new query. This algorithm can only identify which existing 
queries are covered by a new query. Placek et al. [43] propose a heuristic 
approach for checking containment of partial tree-pattern queries. The 
approach allows either keyword-style queries with no structure or strictly 
tree-structured query specified with XPath. 

 

Fig. 2.1. A simple example for containment and homomorphism. 

But existing approaches to containment and homomorphism have some 
limitations. First, Fig. 2.2 shows a simple example for containment and 
homomorphism to depict the inefficiency of the tree traversal algorithm 
in general. To find a match for node //b in the sample new query /a//b, 
six comparisons are required, namely x, m, n, o, p, and b. The 
inefficiency becomes worse for ancestor/descendant operators (//) 
because all the descendant nodes under the current node need to be 
compared at least one time. Hence, in the case of a large number of 
queries, the tree traversal-based approaches can be time-consuming. 
There are issues with other approaches mentioned in the previous 
paragraphs. Yoo et al. [14] decomposed twig queries into 
paths/branches. Due to the separation of paths and branches, an extra 
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post-processing operation for branching points is needed to remove false 
positives. The approach proposed by Li et al. [15] needs to perform a 
containment check for paths/branches after splitting twig queries into 
paths and branches. One issue with this approach is that the branch 
information is lost. In [16], no solution is provided on how to find 
whether existing queries can cover the new query. And the heuristic 
proposed in [43] is incomplete [22]. The heuristic approach checks the 
containment of Q into Q1 by checking the existence of a homomorphism 
from Q1 to Qa which is equivalent to Q. If there is a homomorphism from 
Q1 to Qa, then Q ⊆ Q1, however, it is possible that Q ⊆ Q1 but there is 
no homomorphism from Q1 to Qa. 

 

Fig. 2.2. An example showing a problem with existing aggregation algorithms. 

On the other hand, this chapter investigates XPath user query 
aggregation that is more complex than simply identifying the 
homomorphism and containment relationship or matching patterns 
between a XML query and an XML publication document [44]. When a 
new user query arrives, two key functions are required in query 
aggregation to determine: (i) the set of queries in an existing query tree 
that are contained by the new user query, and (ii) the set of queries in the 
existing query tree that covers the new user query. In other words, the 
covering relationship may need to be performed for two directions 
between a new query and an existing query tree consisting of a number 
of queries. The former is called the containee algorithm; the latter, the 
container algorithm. Both algorithms will be described in detail in 
Section 2.3. Furthermore, the new user query needs to be merged with 
the existing query with the aggregation operation. The merge operation 
needs to use the exact position to insert the new user query into the 
existing query tree and the subsequent management of the query tree. 
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2.2.3. Node Labeling or Indexing Schemes for XML Database 
Queries 

As a result of increasing popularity of XML data, a number of 
researchers have investigated XML database systems when XML data 
becomes popular. One of the primary challenges of XML database 
systems is to effectively manage semi-structured XML data. To mitigate 
the problem of inefficiency caused by tree traversal operation, node 
labeling or node indexing schemes have been proposed for efficient 
processing of XML data. The research efforts in labeling and indexing 
schemes focus on XML databases operations, such as XML query 
processing, keyword queries for XML search, XML tree comparison for 
heterogeneous databases, etc. 

Node labeling schemes, such as the interval-based labeling scheme  
[17, 18], the prefix labeling scheme [19], the prime number labeling 
scheme [20], the dynamic labeling scheme [45] for managing label 
changes, the keyword query with a structure approach for XML search 
[46], the min-label tree scheme for XML search and identifying similar 
XML tree for heterogeneous databases [47], have been discussed in the 
literature for processing XML database operations efficiently. The labels 
can be used to quickly determine the ancestor/descendant or parent/child 
structural relationship between two nodes for various XML  
database applications. 

Similarly, various indexing schemes have been reported to increase 
efficiency in locating a particular element in a tree-centric data model 
without schema. Indexing techniques can be used for locating node 
names, values, and paths [48]. Some example indexing schemes include 
entry-point algorithm (EPA) and two-point entry algorithms [48], XML 
keyword search [49], and a compacted indexing scheme [50]. 

Efficient labeling or indexing schemes are particularly useful for 
complex and highly-nested data often exist in XML. Those techniques 
are mostly proposed for efficient XML database operations, e.g., query 
processing, rather than XML subscription aggregation in a pub/sub 
system. Although the main objective of XML database systems is 
different from XML pub/sub systems, the rich set of techniques 
developed in XML database systems provide valuable information and 
some can be adapted for XML pub/sub systems. 
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Region code The region code scheme [21] is based on the interval-based 
labeling scheme that assigns left, right, and level position numbers to 
each node in a tree. Numbers can be processed faster than text data. The 
left label, a, is the pre-order value for the node n and the right label, b, is 
a number that is larger than all of a’s descendants. The labels determine 
structural relationships between two nodes by comparing the covering 
intervals for two node labels. The level is the depth of a node from the 
root node. We discuss the region code scheme in detail in Section 2.3. 

2.2.4. XSearch and TwigStack 

The XSearch algorithm [11, 13] is chosen for performance comparison 
in this chapter, because it is well-known, efficient, and explicitly 
proposed for XML query aggregation. The XSearch algorithm shares 
common prefixes with different XPath queries and treats a twig query as 
a unit without a branch split. There is no post-processing operation; 
however, the XSearch algorithm maps a //-node to two paths. One path 
is an empty chain of nodes, and the other path is a non-empty chain. If 
the number of // nodes is large, the number of comparisons is 
proportional to O(|s| × |T (R)|), where |s| is the number of nodes in the 
new query to be aggregated and |T (R)| is the number of nodes in the 
factorization tree [13]. In comparison to XSearch, the syntax described 
in this work supports /, //, and [] (predicate) XML operators. Currently, 
our implementation does not include the use of the *-operator.  
Section 2.3.1 describes another key difference between XSearch and our 
proposed approach. 

The TwigStack algorithm [21] is a holistic approach for matching twig 
queries with XML documents stored in a database, not for XML query 
aggregation in XML pub/sub systems, which is a focus in this chapter. 
TwigStack uses a region encoding scheme to represent each node 
position (left, right, level) within an XML document. The TwigStack 
algorithm treats an XPath twig query as a unit. It is an optimal algorithm 
for computing ancestor/descendant (//) relationships, an important and 
common feature of XML documents, present in an XPath query [21]. 
Although TwigStack is efficient in determining the ancestor/descendant 
relationship, it has not been used for XML query aggregation or XML 
pub/sub systems yet. The high efficiency of TwigStack motivates us to 
adopt the region code for XML query aggregation as efficient 
management of queries which can significantly improve the performance 
of XML pub/sub systems. We adapt the approach to encode nodes in a 
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subscriber’s query index tree first, then compute the aggregated answers 
for containee and container operations based on region code 
representations, instead of navigation on a tree. As a result, our proposed 
approach becomes more efficient in comparison to the existing 
aggregation methods. 

In summary, the differences between our approach and TwigStack  
[21] are: 

 The target problem is different. Our containee algorithm is used to 
determine the containment relationship of a new query and a set of 
existing queries, including the position information of nodes, while 
the TwigStack algorithm determines if there is a match between an 
XPath query and an XML publication document. 

 Our approach consists of both the containee and the container 
algorithms, but the TwigStack cannot handle the container operation. 

 No merge-join step is used in the proposed containee algorithm, 
because the matched query ids are the expected computing result and 
there is no need to enumerate the matched nodes results. As a result, 
the post-processing operation used in TwigStack is no longer needed, 
which furtherly improves the performance of our proposed XPath 
query aggregation approach. 

 The TwigStack algorithm is used to compare one XPath query and 
one XML document, whereas our containee algorithm is used to 
identify the correct set of matched queries from multiple XPath 
queries. 

2.3. Our XPath Query Aggregation Approach Using 
Region Encoding Scheme 

This section presents a new aggregation approach for XPath queries. The 
aim of the aggregation operation is to add a new incoming subscriber 
query to an existing query tree that has already been stored at an XML 
pub/sub broker. In order to support the aggregation operation, it is 
required to identify the relationship between the new query and existing 
queries. In other words, we need to check if: (i) The new query covers 
some existing queries, (ii) The new query is covered by exiting queries, 
or (iii) Neither of two scenarios. In addition, another requirement is to 
identify where to add the new query into the existing query tree. 
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Our approach adopts region code [21] to efficiently locate query nodes 
in the existing query tree and adapts the technique for XML pub/sub 
query aggregation to address the four aforementioned requirements. Our 
query aggregation approach has three parts. The first is to create a global 
query index tree, in which each node is assigned a region code (left, right, 
level). The region code represents the positional information of the node 
(see Section 2.3.1). The second and third parts are the new containee and 
container algorithms, respectively (see Sections 2.3.2 and 2.3.3). The 
containee algorithm identifies the set of queries in a global tree that are 
contained within the new incoming query. The container algorithm, on 
the other hand, identifies the set of queries in the global tree that cover 
the new query. 

2.3.1. Global Query Tree, Region Node Coding and the Data 
Structures 

This section first describes global query index tree which is followed by 
a description of region code and how the code is generated. 

The proposed query aggregation approach operates on a global query tree 
which is the same as the XSearch algorithm [21]. A global query tree is 
a compact representation of a set of XPath queries and enables the prefix 
sharing between XPath queries. Fig. 2.3 depicts an example of four 
XPath queries (q1–q4) and the corresponding global query tree with 
region code. Each node n of a global query tree has a node label (e.g., 
node a under the Root) and a set of query ids sub(n) (e.g., {1, 2, 3, 4} for 
node a). The process of adding a new query into the global query tree is 
performed in a top-down fashion. For a node u with subscription id s in 
a new query to be added to the tree, the algorithm needs to find a node n 
in the global query tree with the same label as u such that s is not a 
member of sub(n). If there is an existing child already in the tree, then 
add s to sub(n). Otherwise, a new node n is created and s is added to 
sub(n). The addition process of the subtree rooted at u in the new query 
continues recursively. Details can be found in [21]. 

As stated, a region code example is shown in Fig. 2.3. Region encoding 
[21] is performed through a pre-order traversal of the tree. Each node n 
in the global query tree is associated with a tuple (sub(n), [left: right], 
level). The first term, sub(n), represents the set of query ids which share 
node n. The value of the left attribute is the number given to a tree node 
in a pre-order traversal of the tree. The value of the right attribute is the 
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number given to the tree node after its children are recursively traversed 
from left to right. If the node is a leaf, the value of its right attribute is 
equal to its left value plus 1. The left attribute denotes the left position of 
n in the global query index tree; the right attribute is the value of the right 
position of n in the tree; and the level is the depth of node n as measured 
from the root node. 

 

Fig. 2.3. An existing global query tree example. 

The region code can determine the ancestor/descendant and parent/child 
relationships. For instance, consider two nodes n1 and n2, where n1 with 
region code ([l1: r1], d1) and n2 with region code ([l2: r2], d2). The 
structural relationship between these two nodes n1 and n2 can be 
determined by: 

 n1 and n2 have an ancestor/descendant relationship if and only if l1 <l2 
and r1>r2; 

 n1 and n2 have a parent/child relationship if and only if l1 <l2, r1 >r2 
and d2=d1+1. 

Fig. 2.3 is the resulting tree for queries q1, q2, q3, and q4 which are shown 
at the top left corner of the figure. Superscripts on node labels are used 
when the same label appears multiple times: a labeli signifies the ith 
occurrence of the label. In Fig. 2.3, consider node a1 with region code 
([2:21],1) and node //b1 with region code ([3:10],2). Node a1 and node 
//b1 satisfy the parent/child relationship. Furthermore, for node a1 with 
region code ([2:21],1) and node c1 with region code ([8:9],3), node a1 

e1

({2,4},[4:5], 3)

Root(#)

a1

({1,2,3,4}, [2:21],1)

//b1

({1,2,3,4},[3:10], 2)
//c2

({2},[11:12], 2)
//b2

({3},[13:16], 2)
//b3

({3},[17:20], 2)

d1

({3,4},[6:7], 3)
c1

({4},[8:9], 3)
e2

({3},[14:15], 3)
c3

({3},[18:19], 3)

Global query tree
A given set of Xpath queries:

q1 = /a//b
q2 = /a[.//c]//b/e
q3 = /a[.//b/d][.//b/e]//b/c
q4 = /a//b[d][e][c]
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and node c1 satisfy the ancestor/descendant relationship. However, node 
//b1 with region code ([3:10],2) and node c2 with region code ([11:12],2) 
do not satisfy either relationship. 

The steps for generating the region code are presented in Algorithm 2.1, 
where n is the current working node in the global query tree, num is the 
sequence number generated using pre-order traversal, num is an integer 
number, and level is the level of n in the global query tree. The output of 
Algorithm 2.1 is that each node under node n has its own region code. 

Algorithm 2.1. generateRegionCode(n, num, level). 

 
 
The primary notations and data structures used in the algorithms are 
described next. Let q be a general term that refers to any node in a new 
query. The function q.getChildren() returns all children nodes of q. For 
example, a1.getChildren() is the list {//b1, //c2, //b2, //b3} in Fig. 2.3. The 
function q.sub() returns all the query ids associated with node q. For 
example, a1.sub() returns a list of {q1, q2, q3, q4}. Next, combined data 
structures including a hash table and label lists are used to store all region 
code instances. The hash table can quickly find a region code list based 
on node labels. A label list is a sorted region codes list for nodes sharing 
identical node labels. For example, Fig. 2.4 shows a set of five label lists 
for the global query index tree shown in Fig. 2.3. 

 

Fig. 2.4. Label lists for the global query index tree in Fig. 2.3. 



Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1 

50 

Further, there is a stack associated with a label list for each node q, 
denoted as Sq, as shown in Fig. 2.5. We can access nodes in a global 
query tree from label lists. Stacks temporarily hold nodes that we have 
seen and match a new query node but not all its subtree have been 
processed. Each stack associated with q (e.g., Sq) has a pointer to the 
stack of the parent node of q. For each q, there is a pointer pointing to an 
entry in the corresponding label list of q, denoted as Cq. The attributes of 
a region code can be accessed by Cq → left, Cq → right and Cq → level. 
For example, for node //b in the new query, the pointer associated with 
node //b is represented as Cb and //b has a label list {b1, b2, b3} as shown 
in Fig. 2.5b. If Cb points to b1 in the label list, then b1.left is 3, b1.right is 
10 and b1.level is 2, as depicted in Fig. 2.4. 

 

(a) An example of the combined data structures associated with a new query 
node q 

 

(b) An example of the data structures for the new query tree 

Fig. 2.5. The data structures associated with a new XPath query. 
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Matched elements of node q are pushed onto Sq. Each element in Sq has 
a pointer pointing to the corresponding parent element stored in the stack 
for the parent of q (Sq.parent). Stacks encode the matched elements during 
the comparing process in a compact way. For instance, for a branch node, 
only one copy of the matched element of node q needs to be stored, 
instead of multiple copies of the matched elements for multiple branches. 

The process of adding a new query into a global query index tree is 
explained as follows. Consider q as a query node in a new query to be 
added to the global query tree, id as the query id associated with q, and 
node n as a node in a global query tree. Algorithm 2.2 presents the 
process of adding an XPath query node to the query index tree. 
Algorithm 2.3 illustrates the steps for removing an XPath query based 
on id when a query is unsubscribed. Fig. 2.3 depicts an example of the 
global query index tree created using Algorithm 2.2. 

Algorithm 2.2. addQuery(q, id). 

 
 

Algorithm 2.3. removeQuery(id). 

 

2.3.2. Containee Algorithm of the New Approach 

This section presents the containee algorithm, which can identify a 
subset of existing queries contained by a new incoming query. Fig. 2.6 
shows the concept of finding the existing queries (captured in the global 
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query tree on the right) which are contained or covered by the new query 
Q: /a [. //b/e]//b[c, d] (the small tree on the left). The idea is to determine 
whether every node of Q can be mapped to nodes of the global query 
tree. In addition, parent/child relationships and ancestor/descendant 
relationships among nodes in the global query tree need be consistent 
with Q. For example, in Fig. 2.6, both mapped nodes and their structures 
of /a//b/e of Q are marked in a hatched pattern and the mapped nodes of 
/a//b[c, d] are marked in shaded pattern. The leftmost node //b1 in the 
global query tree (on the right) is in both the hatched pattern and the 
shaded pattern areas. 

 

Fig. 2.6. The concept of a containee algorithm. 

The containee operation is presented in Algorithm 2.4 to Algorithm 2.8. 
It operates on the label lists which store region code instances for nodes 
in the global query tree, instead of operating on the global tree directly.  
Fig. 2.4 shows an example of label lists for the global query tree as shown 
in Fig. 2.3. As a result, our proposed containee algorithm is more 
efficient, as only the label lists that are associated with the new query are 
traversed, which has a smaller number of nodes than that of the entire 
global query tree. 

Algorithm 2.4 is an adaptation of the TwigStack algorithm [21]. Q is a 
new query and Algorithm 2.4 is to identify the set of queries in the global 
query tree that are contained by Q. It associates a stack Sq and a label list 
Tq with each node q of Q. The stack keeps track of matched nodes from 
the global query tree.  
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Algorithm 2.4. containee(q) algorithm. 

 

Algorithm 2.5. getNext(q) definition. 

 

Algorithm 2.6. cleanStack(value) definition. 

 

Algorithm 2.7. computeSubResult() definition. 
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Algorithm 2.8. isEndOf(q) definition. 

 
 

Algorithm 2.4 is a bottom-up process which searches all potential 
solutions guaranteed to join the final results. If a leaf node of the new 
query is met, the algorithm outputs the solution currently in stack from 
the root node to the leaf node, stores the solution at the leaf node and fills 
the match query id to the nearest branch node. The matchSet for each 
node is an Arraylist that holds the id information for queries in the global 
query tree covered by the corresponding query node of the new query. 
The curNode node is the next node to be processed in the new query 
which is returned by the function getNext(q). Key functions used are 
highlighted as follows: 

 containee (q): computes the queries covered by the new query q; 

 getNext(q): returns the highest possible node in the new query tree 
which may have a mapping node in the global query tree; 

 cleanStack (value): pops unsatisfied elements from stack whose right 
positions (region values) are smaller than the input value. If the right 
position value is smaller than the current value, there is no 
parent/child relationship. If the stack of a descendant node is not 
empty, the stack will be cleaned; 

 computeSubResult(): returns the matchSet results for one branch; 

 showSolutionFromStack (): outputs matching path elements from 
stacks; 

 recordPartialResNearestBranchNode(): writes the partial results to 
the nearest branch node; 

In Algorithm 2.4, lines 3-4 remove elements from the parent stack 
Sparent(curNode) when the right value of their region code is smaller than the 
left value of the region code for the current node CcurNode, because these 
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elements cannot be ancestors of CcurNode. (CcurNode points to the label list 
of curNode.) Lines 6-7 clean ScurNode by popping elements in ScurNode 
whose right value of the region code is smaller than the left value of the 
region code for CcurNode being pushed onto ScurNode. Lines 9-11 call the 
function showSolutionFromStacks() to check the parent/child operator 
(/) from the leaf stack to the root stack. If the parent/child operator (/) is 
satisfied, the sub-results are stored in the nearest branch node p.  
Lines 15-17 remove remaining elements in stacks and add the  
sub-results. 

The function getNext(q), where q is the new query node, is a key method. 
The output of this function is the next query node to be processed in q 
which either all its subtree nodes have matched elements or a query node 
that has a minimum left value in the associated label list. The containee 
algorithm operates on stacks associated with query nodes identified by 
the function of getNext(q) and outputs matching path elements via 
showSolutionFromStack() when accessing a leaf node. 

The function getNext(q) first process each child node q (lines 3-4). When 
accessing a leaf node (recursion exit), getNext(q) returns q as a result 
(lines 1-2). In the recursion segment, for a node q, if every child qi is 
equal to the returned result from getNext(qi), we look for an element in 
the label list associated with q, which is a common ancestor of all 
matched children elements pointed by Cqi (line 12). Cqi is a pointer 
associated with child node qi. If such a common ancestor element exists, 
node q is returned; otherwise, the child node of q with the smallest left 
value qmin is returned (line 14). The function arg min{Cqi → left} returns 
the child node qi of q with the smallest left values; the function arg 
max{Cqi → right} returns the child node qi of q with the biggest right 
values (lines 9-10). The rule of being a common ancestor element holds 
when Cq → left < Cqmin → left and Cq → right > Cqmax → left. Lines 7-8 
handle the case where parent and child nodes have the same label, for 
instance, a new query /a/b/b/c. 

The function computeSubResult() finds query ids for queries covered by 
the new query. It is called either when a node n of the new query is a 
branch node and its matching element is being popped from its stack or 
when end conditions of all its children are satisfied. A set intersection 
computation is required (line 3 of Algorithm 2.7) to determine the match 
set for node n. Sub-results for this node n are computed together (line 5 
of Algorithm 2.7). This is one of the differences between our algorithm 
and the TwigStack algorithm [21]. The final result of the set of ids for 
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queries which are contained by the new query is returned by the 
containee algorithm as shown in Algorithm 2.4. An example showing 
why intersection is used is explained in Fig. 2.7. 

 

Fig. 2.7. An example of computeSubResult () for the new query Q. 

The isEndof () method checks the end condition, computes the sub-result 
for node q and cleans the stacks if all nodes of subtree(q) reach  
the end condition. 

In summary, the containee algorithm is a new aggregation approach that 
uses region code to effectively evaluate ancestor/descendent or 
parent/child relationships between query nodes. In addition, the label 
lists for the global query index tree enable the algorithm to search only 
the label lists associated with the new query, instead of searching the 
whole query index tree, for higher efficiency. The XSearch algorithm 
[13], on the other hand, has to search the complete query index tree and 
map a //-node to paths of length = 0 and length ≥ 1. 

When the running example query Q in Fig. 2.5b is matched against the 
global query index tree containing four XPath queries in Fig. 2.3, there 
are three matched path results. 

 ([8:9],3) – ([3:10],2) – ([2:21],1) for path /a//b/c, and the resulting 
query ids are {4}; 

 ([6:7],3) – ([3:10],2) – ([2:21],1) for path /a//b/d, and the resulting 
query ids are {3,4}; 

 ([4:5],3)- ([3:10],2) – ([2:21],1) and ([14:15],3) – ([13:16],2) – 
([2:21],1) for path /a//b/e and the resulting query ids are {2,3,4}. 
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When ([3:10],2) is popped from stack Sb1, the computeSubResult() 
function is called upon as shown in Fig. 2.7. Before the element ({4}, 
[8:9],3) in the stack Sc is popped, the sub-result (query id {4}) is recorded 
at the nearest branch node //b of the leaf node c. Similarly, before the 
element ({3,4}, [6:7],3) is removed from the stack Sd, the sub-result 
(query ids {3,4}) is added at the nearest branch node //b of the leaf node 
d. Since //b is a branch node in the new query Q and has two child nodes 
c and d, an intersection is applied here to filter out unsatisfactory queries, 
e.g., query q3. Query q3 (/a[.//b/d, .//b/e]//b/c) has node a as the branch 
node, while query q4 (/a//b[d, e, c]) has node //b as the branch node. The 
sub-result {4} ∩ {3, 4} = 4 is obtained. After ([4:5],3) is popped from 
the stack Se, ([3:10],2) is popped from its stack and ([13:16], 2) is moved 
to stack Sb2. After the solution ([14:15],3) – ([13:16],2) – ([2:21],1) is 
found from stacks, ([14:15],3) is popped. For the query node b2 in Q, 
since its child query node e has reached its end condition, the element 
([13:16],2) is popped from stack Sb2. Then, the remaining element 
([2:21],1) is popped from the stack Sa. Since node a is a root node and 
also a branch node, the computeSubResult() is called for node a to 
compute the intersection result: {2, 3, 4} ∩ {4} = {4}. The final answer 
is {4}, that is, query q4 is covered by the new query Q. 

A detailed issue is when to clean descendant elements before removing 
current elements. Fig. 2.8 depicts such an example. In the global query 
tree, there is a left body element with region code ({Q1-Q6}, [7:58],  
2) and a right body element with region code ({Q1,Q3,Q5},[59:70], 2) at 
the second level of the global query tree. In this example, the right body 
element in the global query tree contains all elements specified in the 
new query. So the right body element ({Q1,Q3,Q5}, [59:70], 2) can be put 
in the stack of Sbody and the left body element ({Q1-Q6}, [7:58], 2) should 
be popped from stack Sbody according to line 6 in Algorithm 4, because 
the left body element has been processed and should be removed. At this 
point, the matching nodes still exist in the stack for descendent nodes 
body.content, hr, body.end and bibliography, e.g. ({Q2}, [40:43], 3), 
({Q2}, [41:42], 4), ({Q2,Q5,Q6}, [14:23], 3), and ({Q2,Q5}, [15:16], 4). 
To get the correct answer, when popping an element from the stack, the 
algorithm maintains a rule that the stacks for all descendant nodes should 
be empty because their ancestor element is to be popped off from the 
stack. If they are not empty, the elements in the descendant stacks are 
popped first, then computes the total of all sub-results for the current 
node, which are an intersection of the results from its children, and passes 
the result to the nearest ancestors of the current node. Lines 7 and 8 of 
Algorithm 2.8 describe above step. 
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Fig. 2.8. An example of parent node popped before child node  
of the containee algorithm. 

2.3.3. Container Algorithm of the New Approach 

The aim of the container algorithm is to check if existing queries cover 
the new incoming query. The steps of the container algorithm are 
summarized as follows: first, identify queries in the global query tree that 
do not cover the new query; second, compute the complement of those 
identified queries to find the set of queries that cover the new query. 
These operations of the container algorithm are conceptually similar to 
operations performed in the XSearch algorithm. 

Fig. 2.9 shows the data structure used by the container algorithm. To 
compute the container result, nodes in the new query are encoded with 
region code and indexed by a hash table based on node labels. The label 
lists are sorted on left values of region code instances. Each node n in the 
global query tree is associated with a label list from the new query. For 
each node n in the global query tree, there is a pointer pointing to an entry 
in the corresponding label list of n, denoted as Cn. The attributes of a 
region code instance can be accessed by Cn → left, Cn → right and  
Cn → level. The function n.sub() returns the query ids associated with 
node n. For example, e1.sub() returns a list of {2,4} (the leftmost leaf 
node in the global query tree), and the leaf node e1 is associated with a 
label list {e([9: 10], 3)} and a pointer Ce. 
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Fig. 2.9. An example of the data structure used by the container algorithm. 

The container algorithm is presented in Algorithm 2.9. Algorithm 2.9 
recursively search on the global query tree in pre-order traversal to find 
paths in the new query which are covered by the global query tree. 
Algorithm 2.9 returns the complement results that do not contain the new 
XPath query. A query path in the global query tree that has a covering 
mapping to the new query path should have both label match and the 
parent/child (p/c) or ancestor/descendant (a//d) match and should have a 
shorter or equal path length of the new query. A query in the global query 
tree that does not contain the new query includes the following cases: 

 A node with a node label that is absent in the new query; 

 A query path in the global query tree that is incompatible with the 
corresponding path in the new query. For instance, the relationship of 
parent/child (p/c) of the global tree is not compatible with the 
relationship of ancestor/descendant (a//d) in the new query; 

 Query whose depth is deeper than that of the new query. 

For case (i), the associated query ids will be returned (line 6 in  
Algorithm 2.9). For case (ii), the associated query ids will be returned as 
shown at line 10 in Algorithm 2.10 and at line 11 in Algorithm 2.11. For 
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case (iii), a query node in the global query tree that is compatible with 
the new query path and has a shorter path (line 8 in Algorithm 2.10 and 
line 9 in Algorithm 2.11) is acceptable and an empty set is returned. If a 
node t in the global query tree is not a leaf node, Algorithm 2.9 
recursively calls itself for each child of t (line 5 in Algorithm 2.10 and 
line 6 in Algorithm 2.11). Notes that Ct represents the current working 
element in the list labelList associated with the node t. 

Algorithm 2.9. container(t) algorithm. 

 

Algorithm 2.10. process_real_query_root(t) definition. 

 

Algorithm 2.11. process_query_node(t) definition. 
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The container algorithm proceeds from top to bottom and left to right 
(pre-order) on the global query tree. A running example in Fig. 2.9 and 
Fig. 2.10 illustrates the algorithm. In Fig. 2.10, the global query tree is 
on the right and the new query tree is on the left. The new query Q is 
matched against the global tree. The container algorithm starts from the 
dummy root node rT represented as #. The matching node for node a1 in 
the global query tree is the root query node a of the new Q with region 
code ([1:12],1). The value of a1.solution is ([1:12],1). The container 
algorithm recursively searches each child node of a1 since node a1 is not 
a leaf (line 5 in Algorithm 10) until all leaf nodes are processed in a  
pre-order fashion. The container algorithm then processes the node //b1 
in the global query tree. There are two elements in the b-list {([2:7],2) 
and ([8:11],2)} for the new query Q. Node a with region code ([1:12],1) 
and node //b with region code ([2:7],2) in Q satisfy the 
ancestor/descendant (a//d) relationship. Since the query node //b in the 
new query with region code ([2:7],2) is covered by //b1 (≼) in the global 
query tree, the container algorithm continues to search the children of 
//b1 (node e1, d1, and c1) (lines 6 to 7) as shown in Algorithm 2.11. 

 

Fig. 2.10. An example of container. 

When the algorithm processes node e1 in the global query tree, the 
matching node for node //b1 is ([2:7],2) and the current working node for 
node e1 is ([9:10],3). We find that there is no parent/child (p/c) 
relationship between them, that is the node //b in the new query with 
region code ([2:7],2) does not have e as its child. So {2,4} is returned as 
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the result (line 11 in Algorithm 11). Similarly, for the other two children 
of //b1, container(d1)= ∅ and container(c1)=∅. Therefore, the union of 
container results for all children of //b1 is {2,4} when C//b1 is ([2:7],2) 
according to line 6 in Algorithm 2.11. 

For the second node b with region code ([8:11], 2) in the label list 
associated with node //b1 in the global query tree, the 
ancestor/descendant (a//d) relationship holds between the node //b with 
region code ([8:11], 2) and the node a with region code ([1:12], 1). After 
identifying //b1 ≼ ([8: 11], 2), the algorithm expands the node //b1 to 
recursively match its children (node e1, d1, and c1) by calling 
container(e1), container(d1) and container(c1), respectively. The current 
elements Ce1, Cd1, Cc1 in the e-list, d-list, and c-list are ([9:10], 3), 
([5:6],3) and ([3:4],3) in Fig. 2.9, respectively. A parent/child (p/c) 
relationship exists between the node //b with region code ([8:11], 2) and 
the node e with region code ([9:10],3). A parent/child relationship (p/c) 
does not exist between the node //b with region code ([8:11], 2) and the 
node d with region code ([5:6], 3). Similarly, a parent/child (p/c) 
relationship does not exist between the node //b with region code ([8:11], 
2) and the node e with region code ([3:4],3) in the new query. Node //b 
in the new query with region code ([8:11], 2) does not have d and c as its 
children. Therefore, nodes d1 and c1 in the global query tree do not have 
mapped nodes in the new query when b1 in the global query tree is 
mapped to the new query node //b with region code ([8:11], 2) as shown 
in Fig. 2.10. The query ids for the nodes d1 and c1 are then returned. 
Hence, container(e1)=∅, container (d1)={3, 4} and container(c1)={4}. 
According to line 6 in Algorithm 11, the union of the container results 
for all its children of //b1 is {3, 4} when C//b1 is ([8:11],2). As a result, the 
container(//b1) = {2, 4} ∩ {3, 4} = {4}. 

Similarly, container(//c2) = ∅. For the child node //b2 of node a1 in the 
global query tree, the element ([2:7], 2) is a matching node of node //b2 
in the global query tree, so the container algorithm expands to search //b2 
children node e2 in the global query tree. The element ([2:7], 2) does not 
have e as its child because there is no parent/child (p/c) relationship 
between the region code ([2:7], 2) and the region code ([9:10], 3). So, 
the query ids for e2 are returned and the result is {3}. Since the second 
element ([8:11], 2) in the b-list is a matching node of //b2 node and has 
an e child node, an empty set is returned (line 9 in Algorithm 2.11) for 
([8:11], 2). Hence, the container(//b2) is ∅ ({3} ∩ ). Furthermore, the ∅
result of container(//b3) is . Line 5 in Algorithm 2.10 leads∅  to 



Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems 

63 

container(a1)={4}. So, query q4 cannot contain the new query Q and 
queries {q1, q2, q3} as the result can contain the query Q. 

We highlight the difference: our container algorithm encodes the new 
query nodes to reduce the search space; XSearch algorithm still maps a 
//-node to paths of length = 0 and length ≥ 1. For example, in Fig. 2.10, 
to find the mapping path in the new query for the source path /a//c in the 
global query tree, two comparisons (a and c) are needed in our presented 
algorithm that examines the label list a of {[1:12], 1} and list c of {[3:4], 
3}. But with XSearch, five comparisons (//b, c, d, //b and e) are needed 
because of //-operator. 

2.3.4. Complexity Analysis 

This section presents time complexity and space complexity for our 
containee and container algorithms. Our containee and container 
algorithms compare each pair of nodes between the global query tree and 
the new query for at most once. In XSearch algorithm, each pair of nodes 
between |T(R)| and s are checked at least once. For example, the XSearch 
algorithm has to check all the descendent nodes under the node with the 
ancestor/descendant (a//d) operator (//). In this case, the number of nodes 
that needs to be compared can be close to |T(R)| when the occurrence for 
//-operator is high. 

 Time complexity. There are two cases for the aggregation. 

Case 1: There is no //. For this case, the complexity of our containee 
algorithm is O(N), where N is the sum of the number of entries in the 
label lists that are associated with the new query. For this case, each 
corresponding label list will be searched to find the matched entry; 
hence, the time complexity is O(N). 

Case 2: There is at least one //. For case 2, the time complexity of 
our containee algorithm is still O(N) for the same reason. For our 
container algorithm, the complexity is O(|T(R)|), where |T(R)| 
represents the number of nodes in the global query tree. Our 
container algorithm searches the global query tree in pre-order and 
compares each node in the tree with the associated label lists for the 
new query. In comparison, the time complexity of both the containee 
and the container algorithms in XSearch algorithm is O (|s| × |T(R)|), 
where |s| is the number of nodes in a new query and |T(R)| is the 
number of nodes in the factorization tree [51]. 
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 Space complexity. The extra space complexity for our containee 
algorithm is O(|L|), where |L| is the size of the label lists for storing 
region code instances of the global query tree. The space complexity 
for storing our container algorithm is O(|l|), where |l| is the size of 
label lists for region code instances of the new query. There is no 
extra space cost for the XSearch algorithm. We use space to improve 
the efficiency. 

2.3.5. Label Maintenance for Dynamic Query Updates 

The discussions above focus on the scenario of existing static queries. In 
a dynamic scenario, queries can be added or removed. When a query is 
added or removed, the query index tree structure changes and the region 
code (or index) for nodes in the tree needs to be updated as well. 
Dynamic query updates affect the containee algorithm, but not the 
container algorithm, because the containee algorithm makes use of the 
region codes for nodes in the global query tree. 

Based on our knowledge, there are some existing discussion on how to 
handle dynamic query updates. In [52], the authors investigate the 
existing XML labeling schemes and their support for dynamic updates. 
The approach discussed in [53] proposed to use a nested tree to reduce 
the number of relabeling operations in order to support XML data 
updates. The labeling format for a node in a nested tree is 
[prefix:localPosition]. Hence, elements that are to be added later can use 
the region code ([prefix:left, prefix:right], level). 

One possible option is to use real numbers for regions while maintaining 
the aggregation tree. For instance, to add a node under [1:2], one could 
insert a region [1.1:1.9] as a child without having to resize the regions. 
Moreover, from the engineering perspective, we can design two global 
query trees on two servers: the on-line server accepts query aggregating 
requests and the off-line server accepts query updating requests. At each 
server, there are an in-memory global query tree and a serialized global 
query tree on disk for backup purpose. After a certain period of time 
based on configuration or the amount of changes, the system can switch 
to the off-line server as the on-line server, i.e., it performs reindexing on 
the global query tree and accepting query aggregating requests. Also, the 
original on-line server is used as the off-line server, i.e., it performs 
rebuilding the global query tree from the serialized global query tree on 
the original off-line server and accepting query updating requests. This 
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approach can provide an approximate solution instead of the exact 
solution. But it is only temporarily. This is a trade-off between efficiency 
and accuracy. 

2.4. Experimental Evaluation 

The performance of the XSearch algorithm and the proposed query 
aggregation approach are evaluated in this section. XPath queries 
evaluated in the experiments by two approaches are generated using 
XPath query generator of Yfilter [12]. Yfilter is a prototype developed 
for filtering XML messages against XPath queries. 

The experiments were conducted on a system consisting of two 3.0 GHz 
Intel Pentium cores with 2.0 GB of RAM running under Windows XP. 
Before the performance evaluation, we first warmed up the JVM and the 
CPU to mitigate the effect of cache faults and JVM warm up times. All 
the processing times presented are the average value over 20 runs. To 
exclude the effect of JVM garbage collection, garbage collection was 
explicitly invoked before each measurement. 

The parameters used in the performance evaluation are chosen in a way 
similar to that used in the evaluation of XSearch [13]. In [13], the 
parameter values for evaluating the efficiency of the XSearch algorithm 
are listed as follows: (i) the maximum query depth is 10;  
(ii) prob(//)=0.05; (iii) the probability of having more than one child at a 
given node is 0.1; (iv) the number of queries is varied between 1000 and 
100,000. In addition, to measure the impact of prob(//) and 
prob(branching), values of prob(//) and prob(branching) are varied in 
the interval [0, 0.2] by steps of 0.05. Parameter values used in this 
chapter are similar to the values used in [13-15, 10-12]. 

Performance metrics for evaluating the XSearch and the new aggregation 
algorithms included below: 

 Processing time for the containee and container algorithms; 

 Parsing time for XPath queries and building the global query tree; 

 Building time for the label list for region codes; 

 and the space complexity for NITF experiments. 
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The processing time for the containee algorithm (𝑡⊇
௡௘௪ for the proposed 

algorithm and 𝑡⊇
௫௦௘௔௥௖௛ for XSearch was measured between the end of 

the algorithm and the beginning of the algorithm. The processing time 
for the container algorithm (𝑡⊆

௡௘௪ for the proposed algorithm and 
𝑡⊆

௫௦௘௔௥௖௛ for XSearch) was measured between the end of the algorithm 
and the beginning of assigning the region codes to the new query. The 
total processing time is the sum of the processing times of the containee 
and container algorithms 𝑡௧௢௧௔௟

௡௘௪  for the proposed algorithm and 
𝑡௧௢௧௔௟

௫௦௘௔௥௖௛ for XSearch. 

2.4.1. Experiments with NITF Queries 

Test queries used in this section were NITF queries that are generated 
based on News Industry Text Format (NITF) NITF.dtd. The NITF.dtd is 
used in XML pub/sub systems [54]. Six randomly selected queries were 
used in the experiments and are listed in Table 2.1. These queries are 
used in Sections 2.4.1.1, 2.4.1.2  and 2.4.2. 

Table 2.1. The NITF queries to be tested in experiments. 

 Query content Type 

Q1 /NITF/body/body.content linear path queries no // operator 

Q2 /NITF/head linear path queries no // operator 

Q3 /NITF//head linear path queries with // operator

Q4 /NITF[body/body.content]/head twig queries no // operator 

Q5 /NITF[body//body.content]//headtwig queries with // operator 

Q6 
/NITF[body/body.content//hr] 
/head/docdata/doc-scope/xt

twig queries (depth of 5) with // 
operator

 

The measurement results presented in Figs. 2.11-2.14 are in line with the 
complexity analysis of the algorithm presented in Section 2.3.4. The 
algorithms proposed in this chapter demonstrate a superior performance 
in comparison to XSearch. The measured performance improvement also 
includes the impact of system overheads that are difficult to capture in 
the time complexity analysis presented earlier. A short discussion of the 
performance improvement is presented. 
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     (a) Q1                                                    (b) Q2 

 

          (c) Q3                                                  (d) Q4 

 

          (e) Q5                                                    (f) Q6 

Fig. 2.11. Processing time results for NITF queries. 
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Fig. 2.12. Running time complexity for Q1. 
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Fig. 2.13. Processing time results for NITF queries with different  
number of branches. 
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             (a) Q1                                                   (b) Q2 

 

             (c) Q3                                                   (d) Q4 

 

              (e) Q5                                                   (f) Q6 

Fig. 2.14. Processing time results for NITF queries when N is very large. 
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are allowed in the existing query set. The results of the processing time 
for Q1-Q6 are shown from Fig. 2.11a to Fig. 2.11f. When N is small 
(e.g., N=100), the number of irrelevant nodes (no parent/child or 
ancestor/descendant relationship) that can be skipped for the new 
proposed algorithm is relatively small and the proposed approach needs 
more operations. As a result, the performance becomes worse when N is 
small. But when N is large (N≥500 from the experiments), the new 
proposed algorithm is much more efficient, because the proposed 
approach can effectively skip more irrelevant nodes to save processing 
time instead of traversing the whole global tree required by XSearch. 

As illustrated in Fig. 2.11f for Q6, the processing time of the new 
containee algorithm is small, around 0.025 ms, and that is because a  
pre-processing is applied. The pre-processing uses hashing which is of 
O(1) time complexity. If a new label is not found, we can determine the 
result without going through the entire tree. The XSearch algorithm can 
be improved using this pre-processing as well. The current XSearch does 
not have this pre-processing. Hence, the processing time of the containee 
method for XSearch is significantly higher than that of the new containee 
algorithm. 𝑡⊆

௡௘௪and 𝑡⊆
௫௦௘௔௥௖௛ has a difference of 48.8 % to 51.7 % for Q6. 

For Q1, Q2 and Q4, the processing times for the containee algorithm are 
smaller than the times for computing the results for the container 
algorithm. For the containee algorithm, there is only the parent/child 
operator (/) in Q1, Q2 and Q4; hence, the algorithm only needs to iterate 
all the child nodes of a node in the global query tree, instead of all the 
descendant nodes. To compute the containee results, each node of the 
new query should be mapped to nodes in the global query tree. On the 
other hand, to compute the container results, each node in the global 
query tree should be mapped to the new query tree. Since the size of the 
global query tree is much larger than that of a new query, more node 
comparison operations are required for the container results. Hence, the 
processing time for the containee algorithm is shorter than that for the 
container algorithm. 

For Q3 and Q5, the processing time for the containee is higher than the 
processing time for Q1, Q2, and Q4. This is because of the 
ancestor/descendant (//) operators they contain. For processing 
ancestor/descendant operator (//), access to the whole subtree is required. 

When the query depth becomes deeper, the cost for XSearch increases 
more than our algorithms because XSearch searches recursively on the 
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entire tree while our algorithm iterates on label lists. Fig. 2.12 shows the 
variation in processing time observed for Q1 when the number of queries 
is varied. The fitable shows that the processing time for containee and 
container algorithms increases fairly linearly with the number of queries. 
The slope of the lines for our algorithms is lower than that of XSearch. 

2.4.1.2. Processing Time Versus the Number of Branches  
in NITF Queries 

The purpose of this experiment is to evaluate the change in processing 
time when the complexity of existing queries is increased. The number 
of branches of queries in the global query tree is varied from 2 to 4. In 
this set of experiments, the total number of existing NITF queries is fixed 
at 3000. Table 2.2 shows three example queries used in the testing with 
2, 3, and 4 branches, respectively. For example, the query 
(/NITF[body//bibliography]/head[title]/meta) has three branches: 
/NITF/body//bibliography, /NITF/head/title, and /NITF/head/meta. The 
new queries are described in Table 2.1 and are the same as the queries 
used in Section 2.4.1.1. The results are presented in Figs. 2.13(a-c). 

Table 2.2. Example queries with 2, 3 and 4 branches. 

Num.  
of branches 

Query content 

2 /NITF/head[meta]/title 

3 /NITF[body//bibliography]/head[title]/meta 

4 
/NITF[head/pubdata]/body[body.head 
//location//state]/body.content/p[q/pronounce]/person/alt-code 

 

2.4.2. Processing Time for Large Number of Queries 

This section examines the processing time of the proposed approach 
when the number of existing queries is very large. Queries shown in 
Table 2.1 are used as new queries. The parameters for existing queries 
are: query path length is 6, prob(//)=20 %, and number of branches is 2. 
The total number of existing queries N varies from 10,000 to 100,000. 
Existing queries are unique. Results are presented in Figs. 2.14(a-f) and 
explained in the passage that follows. 
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As explained, in each graph of Fig. 2.14, the performance improvement 
increases as the number of queries increases. The largest performance 
improvement for a given number of queries is observed for Q6 (see  
Fig. 2.14f) that has a complex structure. 

2.4.3. Parsing Time for XPath Queries and Building Time  
for the Global Query Tree 

Table 2.3 lists the times used for parsing XPath queries and building the 
global query tree by the proposed approach and XSearch. The total 
number of existing queries was varied from 100 to 100,000. An XPath 
query is first parsed by a Yfilter query parser. The outputs of the Yfilter 
query parser are separated branches. A wrapper class called XPathTree 
is used to construct an internal tree format for an XPath query. Then, 
parsed XPathTrees are added to the global query tree. The parsing and 
building time starts when the first query is parsed and ends when the last 
query is added to the global query tree. Based on the data in Table 2.3, 
we can see that the costs of both algorithms are close. 

Table 2.3. Time for parsing XPath queries and building the global query tree 
using XSearch and the proposed approach (ms). 

N XSearch Proposed approach

100 103.42 103.33 

500 217.08 212.44 

1000 298.77 295.35 

5000 947.39 950.66 

10,000 1734.29 1729.47 

60,000 8420.67 8388.55 

100,000 12842.37 12852.77 
 

2.4.4. Building Time for Region Codes and Label Lists 

Table 2.4 lists the time used to build region codes and to create label lists 
for the global query tree. N is the number of existing queries. Based on 
the processing time for parsing XPath queries and building the global 
query tree for the proposed approach (see Table 2.3 and Table 2.4), we 
can observe that the ratio between the time for building region codes for 
nodes in a global query tree and the time for building a global query tree 
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is in a range from 1 % to 2.17 %. Fig. 2.15 depicts the pre-processing 
(building) time represented in logarithmic scale for XSearch algorithm 
and the proposed approach as a function of N. 

Table 2.4. Building time for label lists for the global query tree using  
the proposed approach (ms). 

 

 

Fig. 2.15. The pre-processing time relationship represented in logarithmic 
scale between the XSearch and the proposed approach. 

2.4.5. Space Usage for NITF Experiments 

Section 2.3.4 presents the space complexity for both XSearch and our 
proposed approach. In addition to the space complexity, we also 
measured the actual memory usage for each approach, as depicted in 
Table 2.5. In this table, N represents the number of queries. The second 
row represents the total number of nodes in a global query tree using 
NITF queries. The height for all the global query trees is 7, including the 
root node rT (see the description for NITF XPath query parameters in  
Section 2.4.1.1 and 2.4.2). The total memory usage for XSearch and the 
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proposed approach is shown in the Table 2.5. The proposed approach 
occupies 50 %-60 % more memory space than the XSearch algorithm. 

Table 2.5. Space usage for both approaches in (kbytes). 

 

2.5. Conclusions 

This chapter presented a novel approach for query aggregation for XML 
pub/sub systems. The main idea was to adapt the region coding scheme 
proposed in XML database systems and tailor it to our target domain. 
Our approach comprised of the containee and container algorithms. 
Efficient XML query aggregation algorithm can reduce the number of 
subscriptions, which can then improve the performance of XML 
document filtering and matching time. Both of the containee and 
container algorithms have a lower time complexity in comparison to 
XSearch. Our new approach can reduce the processing time by up to 
about 80 % when the number of queries is large. The tradeoff is that the 
space complexity of the proposed approach is higher than that of 
XSearch. The memory requirement (see Table 2.5) is still reasonable for 
commercial off the shelf servers on which the proposed approach  
will be executed. 

There are a few directions that can be studied further. First, we will study 
the approaches for dynamic query updates and investigate their 
performance. Second, we will conduct experiments that integrate query 
aggregation with XML message delivery technologies [37]. 
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N 1000 5000 10,000 60,000 100,000 

# of nodes 1,418 4,285 6,629 19,678 26,474 

Xsearch 1086.1 4211.2 7501.8 31051.3 47669.8 

Proposed approach 1800.0 6722.5 11894.6 48037.6 72056.9 
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Chapter 3 

A Small World Load-Balancing Approach 
for Queues Based Systems 

Eman-Yaser Daraghmi and Shyan-Ming Yuan3 

3.1. Introduction 

Nowadays, load-balancing algorithms have become increasingly popular 
and powerful techniques in improving the performance of Queues based 
Systems (QbS) [1]. A Queues based System is defined as a system of 
several distributed machines or nodes with waiting lines, or queues each 
of which holds a workload. Load balancing algorithms aims at increasing 
the performance of QbS by redistributing the workloads in a way that 
ensures minimizing the waiting time, expanding the system resource 
utilization, maximizing throughput, and avoiding the overload situation 
[2]. Therefore, it is prerequisite to smoothly spread the load among the 
nodes or lines to avoid, if possible, the situation where one line is heavily 
loaded with excess of workloads while another line is lightly loaded or 
idle [3, 4]. 

As stated in [5, 6], load-balancing algorithms can be categorized into 
either static or dynamic. Static load-balancing necessitates complete 
information of the entire system and workloads information, whereas 
dynamic load balancing requires light assumption about the system or 
the workloads. As in QbS, the workloads are generally not completely 
known, and each node has different capacity and runs at different speed, 
it is more efficient to employ the dynamic load balancing algorithms. 
The diffusion approach [7, 8] is one of the dynamic load balancing 
techniques that have received much attention by researchers in the past 
decades to solve the load-balancing problem. In standard diffusion 
approach, a system which has different nodes exchanges workloads via 
the communication links between these nodes. The workloads are 
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distributed among the nodes, and the load balancing process works in 
sequential rounds. In every round, each node is allowed to balance its 
load with all its neighbors by exchanging the workloads to balance the 
total system load globally, meaning to minimize the load difference 
between the nodes with minimum and maximum load. The  
nearest-neighbor approach [9] is another dynamic technique that allows 
the nodes to communicate and migrate the excess workloads with their 
immediate neighbors only. Each node balances the workload among its 
neighbors in the hope that after a number of iterations the entire system 
will approach the balanced state. 

Generally, dynamic load-balancing algorithms still present fundamental 
challenges when being executed at large-scale systems. Previous 
research [10–12] concluded that three structural factors, which refer to 
the structure of the system that executes the load-balancing algorithm, 
decrease the performance of any load-balancing algorithm as well as 
affect the algorithm convergence rate. The factors are: (1) Increasing the 
number of nodes in the system (i.e. the number of the nodes that 
exchange their workload information); (2) Increasing the network 
diameter which is defined as the longest shortest path between any two 
nodes of the network; (3) Increasing the communication overheads or the 
communication delays among the nodes. These factors, from one hand, 
make it not feasible for a node to collect the load-information of all other 
nodes in the system. Moreover, even if a node collects the  
load-information of all other nodes in the system, this information will 
be not up to date when it is used (i.e. old information may not reflect the 
current load of a node) as more communication delays make this 
information old and thus the task of balancing the load is significantly 
damaged. From the other hand, it is intuitive that a network with longer 
diameter will take longer time to converge as the number of iterations to 
propagate the workloads to all nodes is proportional to the network 
diameter. In addition, previous studies concluded that [13] technical 
load-balancing factors, which refer to the algorithm policies that should 
be considered when designing a load-balancing algorithm, such as the 
load migration rule, affect the performance of load-balancing algorithm. 

In this research, we aim at improving the performance of load balancing 
algorithm by considering both the structural and the technical  
load-balancing factors by proposing a two-stage load-balancing 
approach. The approach, first, designs an overlay network that employs 
the concept of small world in order to reduce the effect of the structural 
factors and then, applies an improving load-balancing that considers the 
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technical factors within the constructed overlay network. This chapter is 
an extended version of our work that was previously published in [14]. 
Our previous work proposed a load balancing approach applied to a 
cafeteria management system. Here, we generalize our work in order to 
allow our approach to be applied to any Queues based System (QbS). 
Therefore, a generalized approach will be described in details in this 
chapter. Moreover, additional extensive experiments were conducted to 
evaluate the performance of the proposed approach on various aspects, 
including throughput, response time, communication overhead, 
movements cost, makespan, and queue length. 

The rest of this chapter is organized as follow: The literature review is 
presented in Section 3.2. Section 3.3 defines the load balancing problem 
formally, describes the FSW construction and explains how it is used to 
solve the load balancing problem. The dynamic load balancing algorithm 
and its performance are presented in Sections 3.4 and 3.5 respectively. 
Finally, Section 3.6 concludes the chapter. 

3.2. Literature Review 

3.2.1. Background on Small World Networks 

A small-world network is a type of mathematical graph in which most of 
the nodes are not neighbors of one another, but these nodes can be 
reached from every other by a small number of hops or steps [15]. Many 
empirical graphs are well-modeled by small-world networks. A certain 
category of small-world networks were identified as a class of random 
graphs by Duncan Watts and Steven Strogatz in [16, 17]. They noted that 
graphs could be classified according to two independent structural 
features, namely the clustering coefficient, which is defined as the 
probability that two neighbors of a node are neighbors themselves and 
average node-to-node distance (also known as average shortest path 
length). Watts and Strogatz measured that in fact many real-world 
networks have a small average shortest path length, but also a clustering 
coefficient significantly higher than expected by random chance. A 
network is said to be small world when it has a small average path length 
and large cluster coefficient. 
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3.2.2. Related Works 

Previous studies have proposed numerous load-balancing algorithms 
targeting at static, small-scale, homogeneous and/or heterogeneous 
environments [7, 18, 19]. In our previous work [14], we proposed a 
dynamic load balancing algorithm that based on the diffusion approach 
targeting practical distributed systems. We employ the cafeteria system 
as a case to prove the efficiency of our work. The diffusion approach  
[7, 18] is a dynamic load-balancing technique where each node 
simultaneously sends the excessive workloads to its under loaded 
neighbors and receives workloads from its neighbors with higher 
workload [5, 20]. In 1990, Boillat et al. [20] presented a new approach 
to solve the load balancing problem for parallel programs. In 1989, 
Cybenko [5] studied the diffusion schemes for dynamic load balancing 
on a message passing multiprocessor networks. Robert Elsasser [21] 
generalized the standard diffusion schemes for homogenous networks to 
deal with the heterogeneous network. In [22], the first order diffusion 
load balancing, relaxed diffusion and generalized adaptive exchange 
(GAE) algorithms for totally dynamic networks were investigated. In 
[23], the authors proposed a modified version of diffusion algorithm for 
load balancing on dynamic networks. The authors in [24] considered a 
neighbourhood load balancing algorithm in the context of selfish clients. 
They assumed that a network of n processors is given, with m tasks 
assigned to the processors. The processors may have different speeds and 
the tasks may have different weights. Neighbourhood load balancing 
algorithms [9] are diffusion algorithm that have the advantage that they 
are very simple and that the vertices do not need any global information 
to base their balancing decisions on. 

3.3. Functional Small World Network (FSW) 

In this section, we present an overview of the Functional Small World 
(FSW) design and provide the technical details of constructing the FSW 
overlay network. The notations used in this chapter is summarized in 
Table 3.1. 

3.3.1. Overview 

FSW plays two important roles: 1) An overlay network that provides 
connectivity among nodes, and 2) A distributed solution that supports 
efficient dynamic load-balancing. In FSW, the nodes are organized in 
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accordance with the Functionality Set (FS) defined by each node in the 
system. Nodes with similar functionality sets form one cluster. We based 
on the concept proposed by Tversky [25] to define the relation of similar 
functionality employed in our research. 

Table 3.1. The symbols used in the chapter. 

Symbol Description 
FSW Functional Small World 
FS The Functionality Set 
G The system that executes the load-balancing algorithm 
N The nodes in the system 
E The connection-links among nodes 
AF All Functions set 

(n )iWL  The set of assigned workloads for node in   

ic  The capacity of node in  

ild  The load of node in  

( )iAdj n  The set of neighbor nodes for node in  

Info  The set stored the information of neighbor nodes for node in  

mig  The array that store the amount of migrated workloads 

il  The effective-load of node in  

avgl  The average effective-load 

lowerN  The set of assistant neighbors  

LD  The load difference 

i  The excess workloads that node in  must migrate 

i  The amount of workloads that node in  can accept 

 

Definition 1 (similar functionality). Generally, similar functionality is 
defined as the difference between the amount of functions in-common 
among nodes and the amount of functions unique to nodes. 

Formally, given any nodes ,i jn n N  with a functionality set of each 
node 

inFS ,
jnFS , the relation of similar functionality is defined by: 

 ( , n ) | FS FS | (| FS FS |) (| FS FS |).
i j i j j ii j n n n n n ns n       (3.1) 

Therefore, nodes with ( , ) 0i js n n   are not similar, while nodes with 
( , ) 0i js n n   are similar. 
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It is clear that functions in common increase similarity, whereas 
functions that are unique to one node decrease similarity. In practice, the 
QbS is modeled as an undirected graph G=(N, E) where N represents the 
set of heterogeneous nodes in the system and E describes the  
connection-links among them. Each node has its role within the system 
and executes several functions, such as printing, computing, etc.; thus, 
each node based on its role within the system defines a set, namely, the 
Functionality Set (FS). Since a small world network has two properties: 
(1) low average hop count between any two random chosen nodes, and 
(2) high clustering coefficient, our approach, in order to construct the 
FSW, categorizes the nodes in the system into two types: 1) An in-
domain node, and 2) A master node. The in-domain node represents a 
node in which located in one cluster and only has connections via short-
links with all in-domain nodes placed in the same cluster and the master 
node of that cluster. The master node represents a node located in one 
cluster and has a connection via short-links with all in-domain nodes 
placed in the same cluster and at the same time has connection via long-
links with some master nodes located in other clusters. Fig. 3.1 shows an 
illustration example of FSW, where nodes n1, n4 and n6 are in-domain 
nodes, while nodes n2, n3 and n5 are master nodes. The long-links (i.e. 
blue lines in Fig. 3.1) creates connections among master nodes and is 
responsible for achieving the high clustering coefficient in the network 
(property 2 in small world networks). Short-links (i.e. black lines) creates 
connection among in-domain nodes, and among master nodes and in-
domain nodes. Short-links and the long-links aim at achieving the 
properties (1) and (2). 

 

Fig. 3.1. An Example of FSW overlay network. 

In our design, we also define the cluster-size M to be the maximum 
number of nodes that are allowed to form one cluster. Pre-defining the 
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cluster size is important to keep small number of nodes in one cluster and 
to maintain good clustering effect. In this research, we adopt the 
guideline proposed by [26] to define M. Hui et al. suggested that the 
cluster size ranges from 1 to 64 maintains good clustering effect. 
Practically, designing a FSW overlay network plays an important role in 
decreasing the number of nodes that will exchange the workloads 
information, minimizing the network diameter, deteriorating the 
communication overhead, and decreasing the time delay results from the 
task re-migration process; therefore, this approach is efficient to be 
applied not only for the entire system but also clustering inside the cluster 
to increase the performance of the load-balancing algorithms. 

In summary, a FSW overlay network can be formed as follows: Each 
node maintains long-links to ensure the connectivity among the master 
nodes (i.e. the connectivity among the clusters to provide shortcuts to 
allow a node reach other nodes that execute similar functionality and 
located in other clusters quickly) and/or short-links to ensure the 
connectivity among the in-domain nodes and the connectivity among the 
in-domain nodes and the master nodes so that a balancing message issued 
from any node can reach any other node in the network. Via short-links 
and long-links, navigation and broadcasting in the network can be 
performed efficiently. In the following sections, we introduce our 
approach in details of designing and constructing a FSW. 

3.3.2. Constructing Functional Small World (FSW) Overlay 
Network 

Constructing a FSW overlay network depicted above involves three 
major tasks: 1) Functional-Clustering; 2) Cluster-Formation, and  
3) Overlay Network Construction. 

3.3.2.1. Functional-Clustering (FC) 

In general, the Functional-Clustering (FC) task aims at 1) Defining the 
clusters (i.e. the number and the name of clusters) that should be created 
within the overlay network based on the functional executed within the 
system, and 2) Adding the nodes initially to the cluster(s) based on the 
in-common functions between the node and the cluster. In other words, 
if there is at least one function in-common between the node and the 
cluster, then the node will be added initially to that cluster. Note that: 
initially, in this step a node can be added to more than one cluster, but 
finally in the next tasks a node will only be added to one cluster. 
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This task is executed before or when a node joins the network. Each node 
ni in the system defines its Functionality Set (FS), which indicates the 
functions that a node can perform and execute within the system, such as 

1 2FS { , ,..., }i kf f f , where iFS  is the functionality set of node in , 1f  is 

a function that can be executed by node in , and k is the number of 

functions that node in  can execute. A cluster, namely, , ,..,i j kCluster
 has 

a functionality set , ,..,
{i, j,..., k}

i j kClusterFS 
. Likewise, ACluster  has  

FS= {A}. Following are the steps performed by the functional-clustering 
task: 

1. Let AF (All Functions) be the set of all functions executed in the 
system 1 1 2.... { , ,..., }n sAF FS FS f f f   , where s  is the total 

number of functions executed within the system, and iFS  is the 

functionality set of node in . In other words, AF is the union of all 

FSs defined in the system. 

2. For each function f AF , create a cluster, namely, fcluster . 

3. Since each node in  has its functionality set 1{ ,..., }i kFS f f , in this 

step initially node in  will be simultaneously added to

1 2
cluster ,cluster ,...,cluster

kf f f . In other nodes, if a node in  executes 

a function fa , then there is an in-common function between a node 

in  and acluster . Thus, the node in  will be added to cluster  

 acluster . 

Note that, the number of clusters that a node can be added to depends on 
the number of functions that a node executes within the system; a node 
that executes more than one function will be added initially to more than 
one cluster at the end of this task. 

3.3.2.2. Cluster-Formation 

As mentioned in the Functional-Clustering (FC) task, a node initially can 
be added to more than one cluster. Therefore, the Cluster-Formation 
(CF) task is a key task to ensure that a node will be added to only one 
cluster regarding the functional similarity. According to definition 1, 
nodes are considered as similar nodes if the amount of in-common 
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functions among nodes is more than the amount of functions unique to 
nodes. This task aims at: 1) deciding the nodes that must finally be added 
to the cluster, and 2) checking the cluster size; thus, if the cluster size 
exceeds M, which is a preset defined maximum cluster size, the cluster 
will be split into two clusters in order to maintain good clustering effect. 
To determine the cluster size, we adopt the guideline proposed by [26]. 
Hui et al. suggested that the maximum cluster size is 64 in order to 
maintain good clustering effect. If the cluster size exceeds M, the steps 
of the functional-clustering task, and the cluster-formation task will be 
applied to split that cluster. Fig. 3.2 illustrate the pseudo code of the 
cluster-formation task. 

3.3.2.3. Overlay Network Construction 

This task constructs the FSW overlay network across the created clusters 
(i.e. after performing the previous two tasks) to form a functional small 
world network by: 

1. Defining the in-domain nodes and the master nodes. 

The size of the FS of each node located in one cluster will be checked 
(i.e. the number of functions that a node can execute); therefore, a node 
that has the largest FS size in icluster  will be defined as a master node 

for icluster , and the other nodes located in icluster  will be defined as the 

in-domain nodes for that cluster. Note, when two or more nodes have the 
largest FS size, then only one node from these nodes will be selected 
randomly as a master node for a cluster since that each cluster has only 
one master node. 

2. Adding long-links and short-links among the nodes. 

Long-links connect a master node located in one cluster with other 
master nodes located in other clusters based on the functional similarity 
between theses master nodes (i.e. see definition 1). Short-links connect 
the in-domain nodes located in one cluster with the other in-domain 
nodes located in the same cluster, and it also connects the in-domain 
nodes located in a cluster with the master node of the same cluster.  
In-domain nodes, master nodes, long-links and short-links play a key role 
in reducing the effect of the structural factors and transforming the 
network into a small world. 
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Fig. 3.2. Pseudo Code of Cluster-Formation task. 

3.4. Dynamic Load-Balancing 

In this section, we explain the proposed load-balancing algorithm that 
will be executed in the constructed FSW overlay network. We first 
formulate the problem in Section 3.4.1, then we present our proposed 
algorithm in Section 3.4.2. 



Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems 

89 

3.4.1. Problem Formulation 

Generally, the entire distributed system is modeled as an undirected 
graph ( , )G N E  where N  represents the set of heterogeneous nodes 
and E  describes the connections among them. Each node in the system 
(i.e. whether an in-domain node or a master node) will be assigned some 
workloads wl during the execution of the system, where each workload 
assigned to a node consumes effort and time; thus, each workload has 
different weight w . The weight of the total workloads assigned to a node 
is referred to as the load of a node 0ild  . Each assigned workload also 

is associated with a function that can process the assigned workload. 
Each node also has a capacity 0ic   which specifies its processing 
capacities (i.e. the largest amount of workload that can be assigned to a 
node in ), where ,i ic ld Z . Since the capacity of each node in 

heterogeneous systems is not equal, our proposed algorithm considers 
the processing capacity of each node when deciding whether a node is 
overloaded or not. 

Definition 2 (the effective-load). Given a node in N that has a 

capacity and assigned some workloads, the effective-load il  of node in  

is defined as the total weight of the workloads assigned to node in divided 

by the capacity of node in . Formally, the effective-load of node in  is the 

load of in  divided by the capacity of in . 

 
(n )

( )

,j i

j
wl WLi

i
i i

w wl
ld

l
c c


 


 (3.2) 

where 1 1( ) { , , , ,..., , , , }i id id z z id idWL n wl w ctr F wl w ctr F      is the set of 

workloads assigned to node in . 

3.4.2. Our Proposed Algorithm 

Our proposed algorithm is shown in Fig. 3.3. Each node in  in G executes 
the same algorithm in parallel. As mentioned before, the structure of the 
system is simplified by constructing the FSW to decrease the graph 
diameter, the number of nodes that exchange the load information and 
communication overhead.  
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Fig. 3.3. Algorithm. NeighborhoodLB. 
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The steps of constructing FSW overlay network is illustrated in  
Section 3.3. The nodes will be spread into clusters, and each node will 
have in addition to the node id idn , a cluster id idctr  to show the cluster 
in which a node is located and idFS  to check if the received task can be 
processed by a node. Following paragraphs demonstrate the proposed 
load-balancing algorithm that will be executed within the constructed 
overlay network in details. 

3.4.2.1. The Initialization Stage 

Let (n )iWL  be the set of workloads assigned to node in  during the 
execution of the computing distributed system, where 

1 1 1( ) { , , , ,..., , , , }i id z z id zWL n wl w ctr F wl w ctr F     . Each assigned 

workload wl consumes time and efforts until being completed; thus, each 
assigned workload has weight w . Each workload wl  assigned initially 
to idctr  and associated with a function F  (i.e. F is the function that can 

process the workload). Each node in  also has, after constructing FSW, a 

pre-defined set of neighbor-nodes (n )iAdj  to store the nodes that have 

connection-links either long-links or short-links with node in . Each node

in  initializes its state (initialization stage) in steps 1 through step 3. 

Step 1 (Line 1 in NeighborhoodLB Algorithm): Each node in  defines 

a set { , , , , }id id id id idInfo ctr n ld c FS    to store the information of the 

nodes in the neighbor-nodes set, where idctr : is the id of the cluster in 

which a node the has idn  is located, idn : the id of a node, 

( )

( )
j id

id j
wl WL n

ld w wl


   the load of node idn  (i.e. the total weight of all 

workloads assigned to the node idn ,), idc : is the processing capacity of 

idn , and  idFS is the functional set of idn . 

Step 2 (Line 2 in NeighborhoodLB Algorithm): Each node in  also 

defines an array (n )imig  to store the amount of the migrated workload 

that node in  will transfer to the under loaded nodes of the set  

neighbor-nodes. Initially, the workloads that will be transferred to other 
nodes is 0 for all nodes in the set of neighbor-nodes. 
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Step 3 (Line 3 in NeighborhoodLB Algorithm): Each node in  

computes its initial effective-load il  via the equation defined in 

definition 2 (i.e. the total weight of the workloads assigned to node in  

divided by the capacity of node in ). 

3.4.2.2. The Information Broadcasting Stage 

Step 4 (Line 4 in NeighborhoodLB Algorithm): Each node in
broadcasts its initial state (i.e. initial information after executing the 
initialization stage) to only its neighbor-nodes (the nodes stored in the 
set adj ). Since a master node has connections with some master nodes 
located in other clusters that have similar functionality via long-links, 
and it has also connections with the in-domain nodes located in the same 
cluster via short-links, the capacity of a master node that will be sent to 

other nodes is divided among the clusters | | 1
ic

long links   in the 

broadcasting stage. 

In fact, each node maintains a FIFO message queue which holds the 
incoming messages. Each message has the format 

, , , ,FS ,"T",[g,"F"]id f f f fctr n ld c  , where idctr  is the cluster id where 

the node that sends the message is located in, fn  is the id of the sender 

node, fld  the loads of the sender node, fc  is the capacity of the sender 

node, fFS  is the functionality set of the sender node, T  is the type of 

the message, g  is the migration information (i.e. information about the 

migrated task and the function F that can process the migrated task). 
There are two types of messages: 

1. Workload Migration message (G):  in sends a G-message to jn  to tell 

it that in  wants to migrate g units of workload to jn . 

2. Broadcast message (B): broadcast the status (i.e. cluster id, node id, 
load and capacity to all neighbor-nodes). 

Step 5 (Line 5 in NeighborhoodLB Algorithm): The main part of the 
algorithm starts when a node takes the first message from the queue and 
processes the message according to its type. If the message type is B, 
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then the node only updates its information stored in the Info  set. If the 

message type is G, then it updates the information stored in the Info  set, 
computes its effective load, and broadcasts its new status to its  
neighbor-nodes. 

3.4.2.3. Computing the Average Effective-Load 

Step 6 (Line 6 in NeighborhoodLB Algorithm): After updating the 
information stored in the Info  set (i.e. after the broadcasting stage), each 

node computes the average effective-load avgl  of a node and its  

neighbor-nodes to facilitate 1) making a decision (i.e. whether a node 
overloaded or not) later by a node, and 2) defining the set of assistant 
neighbors in the next stage. The average effective-load is computed by 
the following equation: 

 inf

inf

.
i j

j o
avg

i j
j o

ld ld

l
c c













 (3.3) 

Note that, in the above formula the capacity of all nodes is considered 
since in heterogeneous systems the capacity is varied from one node  
to another. 

3.4.2.4. Finding the Set of Assistant-Neighbors Stage 

Step 7 (Line 7 in NeighborhoodLB Algorithm): According to the 
average effective-load computed in step 6 by each node, each node 
defines in this stage its assistant-neighbors lowerN . The set of  

assistant-neighbors lowerN  of node in  are the set of nodes that have 

effective-load lower than the average effective-load computed  
by node in . 

3.4.2.5. Workload Transfer Strategy 

Step 8 (Line 8 in NeighborhoodLB Algorithm): The decision of 
calling a procedure LB to migrate the excess workloads or not depends 
on the load difference between the current effective-load of node in  and 
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the average effective-load computed by in . Therefore, the excess 

workload will be migrated if the load difference is positive. 

3.4.2.6. Load-Balancing Mechanism (Procedure LB) 

The pseudo-code of the procedure LB is given in Fig. 3.4. In the 
procedure LB, the load difference iLD , the set of assistant-neighbors 

lowerN , and the set of the assigned workloads (n )iWL  are formed the 

procedure input parameters. The procedure will be called if the iLD  is 
positive, and it works until the load difference of the heavily loaded 
caller node in  becomes less than zero 0i i avgLD l l   . In other words, 

the procedure works until the heavily loaded node becomes  
under-loaded, which means the effective-load of a node is less than the 
average effective-load computed by a node. The procedure first 
computes the excess workload i  of the heavily-loaded node in  that 

needs to be transferred. 

i i lowerProcedure LB(WL(n ),LD , N )

Begin

While(LD 0)

1.Compute  the excess workload of n :

2. sort the submitted workloads in ascending order 

3. sort the assistant neighbours in descending order

4. L

i

i i i iLD c


 

et j=0

5. For a node n  in N  

   a. compute the excess workload n can receive =(l -l ) c

   b. If w(wl )  and F is in FS then

         1) k= k+1

         2) send message to node n , , ,FS ,

j

j lower

j avg j j

k n

j i i i in l c









 "G",[ , ]

       else

          1) go to step 5     

End For

End While

End Begin

F 

 

Fig. 3.4. Procedure LB. 
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Then, it sorts: 1) the set of assistant-neighbors lowerN  in descending order 
based on their effective-loads, and 2) the set of submitted workloads 

(n )iWL  in ascending order in accordance with the weight of each 
submitted workload. The procedure also checks each node in the set 

lowerN  and computes how much a node can receive   (i.e. the workload 
that a node can receive is equal to the difference between the  
effective-load of a node and the average effective-load). The procedure 
migrates only the workload that has weight less than or equal to  . This 
step plays a key role in redistributing the excess workloads to the 
assistant-neighbors in a way that ensures that the node who receives the 
workload maintains the under-loaded status. The LB procedure is 
terminated when the load difference of the caller heavily-loaded node 
becomes negative. In other words, the procedure is terminated when the 
node becomes under-loaded. 

3.5. Experiments 

3.5.1. Experimental Setting 

To test our proposed approach, a discrete-event simulator have been 
implemented using the SimJava [27]. We compare the performance of 
our proposed approach with two of the most popular dynamic diffusion 
approaches, the nearest neighbor algorithm [9] and the original 
neighbourhood algorithm [18]. The comparison tests were based on two 
parameters: the assigned-workloads and the number of nodes, and the 
measurement of the performance of the algorithm was based on six 
metrics: the throughput, the response time or the completion time, the 
communication overhead, the movement cost, the makespan, and the 
queue length. The experiments parameters, and their values are given  
in Table 3.2. 

Table 3.2. Parameters used in the simulations. 

 Description Values 
1 The assigned Workloads 1,000-10,000 
2 The number of nodes in the system 100-1,000 
3 The cluster size 1-64 
4 The number of functions in the FS per node 1-20 
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For fairness of comparison, we have tested the three approaches on 
random graphs (random scenario) generated via random generator. In the 
random scenario, the generator will randomly distribute nodes with a 
functional set associated with each node in the graph. As shown in  
Table 3.2, maximum number of functions that each node can execute is 
20. Since, in this research, we propose a two-stage approach (creating a 
functional small world overall network and then run the 
NeighborhoodLB on the created FSW) to improve the performance of 
load-balance algorithm, the random graph, generated previously, will be 
converted to FSW before executing our proposed NeighborhoodLB 
algorithm. On the other hand, the other two algorithms, the nearest 
neighbor algorithm and the original neighbourhood algorithm were 
executed directly on the generated random graph since they do not 
employ the first stage of creating FSW. 

Only one parameter was changed each time so that any changes in the 
performance would be based solely on this parameter. In fact, results 
achieved from these tests were used to study: (1) the behavior of the 
different load-balancing algorithms under the same condition; (2) the 
behavior of the algorithms for random systems with different number of 
nodes; (3) the behavior of the algorithms for different workloads 
distribution. 

To study the effects of changing the assigned workloads on the average 
response time, the throughput, the communication overhead, the 
movements cost, the makespan, the queue length, the assigned 
workloads were varied from 1000-10,000 workloads unit, and the 
workloads distribution among the nodes were carried in the  
following manner. 

 The initial workload distributions varying 25 % from the average 
effective-load to represent a situation where all nodes have similar 
workloads at the beginning and those workloads are close to the 
average effective-load; in other words, the initial situation is  
quite balanced. 

 The initial workload distributions varying 50 % from the average 
effective-load to constitute the intermediate situations. 

 The initial workload distributions varying 75 % from the average 
effective-load to constitute the advanced intermediate situations. 
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 The initial workload distributions varying 100 % from the average 
effective-load to form the situation where the difference of workloads 
between nodes at the beginning is considerable. 

To study the effects of changing the number of nodes on the average 
response time, the throughput, the communication overhead, and the 
movements cost, the number of nodes were varied from 100-1000 nodes 
and the distribution of the overloaded nodes were carried in the  
following manner. 

 25 % of nodes are idle, 75 % of nodes are overloaded. 

 50 % of nodes are idle, 50 % of nodes are overloaded. 

 75 % of nodes are idle, 25 % of nodes are overloaded. 

3.5.2. Comparative Study 

3.5.2.1. Average Response Time 

The total time taken for the three algorithms, our proposed algorithm, the 
original neighbourhood algorithm, and the nearest neighbor algorithm, 
to complete the assigned workloads increased as the assigned workloads 
was increased as shown in Fig. 3.5. This situation is expected as the more 
workloads to be assigned, the longer it takes to complete all the assigned 
workloads. However, it was observed that our proposed method (i.e. the 
green line) performed better than both the nearest neighbor scheme and 
the original neighbourhood algorithm in all cases. We can see that when 
comparing the results of our proposed method and the original 
neighbourhood algorithm (i.e. the red line) and the nearest neighbor 
algorithm (i.e. the blue line), it is observed that the gap between these 
three curves was widening as the assigned workloads was increased. This 
shows that the method actually reduced the response time or the total 
completion time by a considerable amount (greater speedup) in 
comparison to the original neighbourhood algorithm and the nearest 
neighbor algorithm as amount of workloads increased.  

Fig. 3.5 also shows that the response time of the proposed method  
(i.e. green line) slightly increased when the number of nodes was 
increased. In contrast, the response time of the original neighbourhood 
method (i.e. red line) and the nearest neighbor method (i.e. blue line) 
sharply increased when the number of nodes was increased. 
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Fig. 3.5. The response time of original neighbourhood approach, neatest 
neighbor approach, and our approach for various number of nodes. 

3.5.2.2. Throughput 

As shown in Fig. 3.6, our method outperformed the original 
neighbourhood algorithm and the nearest neighbor method in terms of 
the system throughput in all assigned workloads distribution cases. We 
can notice that the throughput of the system that executes our proposed 
approach steadily increased even the assigned workloads increased, 
whereas the throughput of the system that execute the original 
neighbourhood approach or the nearest neighbor approach drops quickly 
when the assigned workloads increased. 

 

Fig. 3.6. The throughput of original neighbourhood approach, neatest neighbor 
approach, and our approach for various assigned workloads. 

Fig. 3.6 shows that the throughput achieved by the original 
neighbourhood algorithm as well as the nearest neighbor approach 
decreased sharply as the number of nodes in the system increased, while 
the throughput achieved by our proposed method remains stable even 
when increasing the number of nodes. 
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3.5.2.3. Communication Overhead 

Fig. 3.7 shows that the average number of messages sent per node 
increased when the assigned workloads increased. This is because when 
the assigned workloads increased, the number of messages sent per a 
node to broadcast its new status increased. We can see that our proposed 
approach produces less communication overhead than both the original 
neighbourhood approach and the nearest neighbor approach even when 
increasing the assigned workloads. Moreover, Fig. 3.7 shows that the 
average number of messages sent per node increased when the number 
of nodes increased. This is because when the number of nodes increased, 
each node will send more messages to broadcast its information to the 
other nodes. 

 

Fig. 3.7. The average number of messages sent per node of original 
neighbourhood approach, nearest neighbor approach, and our approach  

for various number of nodes. 

3.5.2.4. Movement Cost 

Fig. 3.8 shows the movement cost of original neighbourhood approach, 
the nearest neighbor approach, and our proposed approach vs. the 
assigned workloads, where the movements cost is defined as the total 
migrated workloads divided by the total assigned workloads in the 
system. Clearly, the movements cost of our proposed approach is only 
0.32 times the cost of the original neighbourhood approach, while the 
movements cost of our proposed approach is only 0.34 times the cost of 
the nearest neighbor approach. 

Fig. 3.8 shows the movement cost of original neighbourhood approach, 
the nearest neighbor approach, and our proposed approach. We can see 
that the movements cost of our proposed approach is only 0.33 times the 
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cost of the original neighbourhood approach, while the movements cost 
of our proposed approach is only 0.30 times the cost of the nearest 
neighbor approach. 

 

Fig. 3.8. The movements cost of original neighbourhood approach, nearest 
neighbor approach, and our approach for various assigned workloads. 

3.5.2.5. Makespan 

Fig. 3.9 shows the makespan of original neighbourhood approach, the 
nearest neighbor approach, and our proposed approach vs. the assigned 
workloads, where the makespan is defined as the maximum load 
assigned to a node. Our goal is to assign the load to a node in order to 
minimize the average makespan. Clearly, the makespan of our proposed 
approach is only 0.22 times the makespan of the original neighbourhood 
approach, while the makespan of our proposed approach is only  
0.25 times the makespan of the nearest neighbor approach. 

 

Fig. 3.9. Makespan of original neighbourhood approach, nearest neighbor 
approach, and our approach for various assigned workloads. 

Additionally, Fig. 3.9 shows the makespan of original neighbourhood 
approach, the nearest neighbor approach, and our proposed approach for 
various number of nodes. We can see that the makespan of our proposed 
approach is only 0.30 times the cost of the original neighbourhood 
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approach, while the makespan of our proposed approach is only  
0.24 times the cost of the nearest neighbor approach. 

3.5.2.6. Queue Length 

Fig. 3.10 shows the queue length of original neighbourhood approach, 
the nearest neighbor approach, and our proposed approach vs. the 
assigned workloads, where the queue length is defined as the number of 
waiting requests (assigned loads). Our goal is to assign the load to a node 
in order to minimize the queue length. Clearly, the queue length of our 
proposed approach is only 0.22 times the queue length of the original 
neighbourhood approach, while the queue length of our proposed 
approach is only 0.25 times the makespan of the nearest neighbor 
approach. 

 

Fig. 3.10. Queue length of original neighbourhood approach, nearest neighbor 
approach, and our approach for various assigned workloads. 

Fig. 3.10 shows the queue length of original neighbourhood approach, 
the nearest neighbor approach, and our proposed approach for various 
number of nodes. We can see that the queue length of our proposed 
approach is only 0.30 times the cost of the original neighbourhood 
approach, while the queue length of our proposed approach is only  
0.24 times the cost of the nearest neighbor approach. 

3.5.3. Results and Discussion 

Results show that our proposed approach dramatically outperforms the 
original neighbourhood approach, and the nearest neighbor approach in 
terms of response time, throughput, communication overhead, 
movements cost, makespan, and queue length. 
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The reasons behind achieving better results are: 1) Constructing the FSW 
allows only nodes with similar functionality to communicate with each 
other. Thus, FSW reduces the possibility of re-migrating tasks  
(re-migrating tasks consumes time). 2) Our approach reduces the number 
of nodes that exchange the workload information, decreases the network 
diameter, and minimizes the communication overhead. Thus, the time of 
performing the proposed algorithm will be reduced, such as updating the 
information of the neighbor nodes, calculating the average  
effective-load, choosing the assistant neighbors, and migrating tasks to 
the assistant neighbor. 3) Our proposed approach utilizes the on-state 
information exchange strategy to broadcast its information to only its 
neighbor-nodes, which has the advantages of achieving more accurate 
calculation to the effective-load and the average effective-load without 
increasing the communication overhead (i.e. each node collects the 
information from less nodes, only neighbor nodes, as compared with the 
original neighbourhood approach and the nearest neighbor approach).  
4) Utilizing the concepts of assistant-neighbors allowing only heavily 
loaded nodes to send only (i.e. without accepting any workloads from 
other nodes since the node is currently overloaded) the excess workloads 
to the lightly loaded nodes assistant-neighbors. Also, the lightly loaded 
nodes will only receive the migrated workloads without sending any 
workloads. 5) Our proposed algorithm calculates the average  
effective-load to decide whether a node itself is overloaded or not. 
Specifically, the importance of the average effective-load appears when 
deciding the amount of workloads to be migrated; if the migrated 
workloads to one node is too small, then the number of workloads that 
will be migrated will be high (i.e. which in turn increasing the  
movement costs). 

3.6. Conclusion 

We propose an approach that improves the performance of  
load-balancing algorithms by considering the load-balancing  
technical-factors and the structure of the network executes the algorithm. 
We present the design of an overlay network, namely, Functional Small 
World (FSW) that facilitates efficient load-balancing in heterogeneous 
systems. The FSW achieves the efficiency by reducing the number of 
nodes that exchange their information, deteriorating the network 
diameter, minimizing the communication-overhead, and decreasing the 
time-delay results from tasks re-migration process. We propose an 
improved load-balancing algorithm that will be effectively executed 
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within the constructed FSW, where nodes consider the capacity and 
calculate the average effective-load. We compared our approach with 
two significant diffusion methods presented in the literature. The 
simulation results indicate that our approach considerably outperformed 
the original neighbourhood approach and the nearest neighbor approach 
in terms of response time, throughput, communication overhead, queue 
length, makespan, and movements cost. 
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Chapter 4 

Error Model Identification of Data 
Acquisition Systems by Nonstandardized 
Test Signals 

Linus Michaeli and Jan Šaliga4 

4.1. Introduction 

In general the data acquisition systems (DAQ) acquire analog and digital 
signals from the observed environment and their transformation into the 
digital form suitable for the control computer. The DAQ designed to 
process only analogue signals will be studied in this chapter. These 
DAQs consist of two blocks in the cascade: input analog pre-processing 
blocks (APB) at the input and analog to digital converter (ADC) at the 
output. APB adapts the input analogue signal to the input range and 
operational mode of ADC. Here the analog signal is sampled in time and 
converted into the digital code, suitable for processing by the control 
computer. The acquired analog signals are potentially impacted by 
various interfering error sources, while digital signals can be distorted 
only by the rough faults in the processing phase. Optimal digital signal 
processing suppresses potential quantization and sampling errors in the 
conversion process. While ADC determines the stair-like character of the 
whole transfer function of DAQ, the nonlinear errors are mainly 
introduced in the APB. 

                                                      
Linus Michaeli 
Faculty of Electrical Engineering and Informatics, Technical University of Košice, 
Košice, Slovakia 
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4.2. Selected DAQ Error Parameters and Their Testing 

The transfer function in the stair-like form describes the relation between 
the analog input signal x and the output digital code bin k with 2N possible 
values. (Fig. 4.1). Here, number of bits N determines resolution of DAQ. 
Minimal xmin and maximal xmax values of the input signal x determine the 
full scale range (FSR) FSR = xmax – xmin. The transition code level T(k) is 
determined by the code change from k to (k + 1). For ideal ADC the 
difference between adjustment T(k) and T(k + 1) is constant for any k 
within FSR. The difference is called ideal code bin width or quantization 
step (Q). The output DAQ codes k are usually expressed by different 
binary representations [2]. 

 

Fig. 4.1. Transfer characteristic of DAQ. 

4.2.1. Basic DAQ Parameters 

The basic quantization error of transfer function is caused by the 
rounding operation in ADC. The rounding is performed by assigning 
analog input value x to nearest transition code level T(k). Nonlinearity of 
APB influences the position of T(k) in real DAQ. The stair-like character 
of the whole DAQ transfer function requires testing procedures 
consistent with the approaches defined for ADC. 

In the real DAQ, the transition between adjacent codes due to noise 
induced into analog blocks is described by the function of probability of 



Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized 
Test Signals 

109 

occurrence of individual codes Pk(x) symmetric around the real transition 
code level T(k). The deviations of the real transition code levels T(k) 
from the ideal ones Tid(k) in the stair-like characteristic are described by 
functional error parameters such as the differential nonlinearity of 
DNL(k) and the integral nonlinearity of INL(k). 
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Because of the functional parameter complexity the numerical error 
characteristics are more suitable for characterization in datasheets. 
Therefore DNL and INL are usually expressed in datasheets only by their 
maximal values. 

Signal to noise and distortion ratio (SINAD) and Effective number of bits 
(ENOB) belong to the most frequent numerical error characteristics. The 
SINAD is defined as the ratio of the effective value of basic harmonic 
component to noise rms and distorting harmonic components Krms(f) 
where ffin. 
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where rms is the total noise of real DAQ, which consists of the APB 
noise and the quantization noise of real ADC caused by the rounding 
operation. The increase in noise of APB reduces the ability of the DAQ 
to distinguish between individual levels. The effective number of bits 
represents the number of bits of DAQ which are reliable. 
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where eq is the quantization noise of ideal DAQ with noise-less APB. It 

can be proved that eq = Q/12. Parameter ENOB shows that the 

increase of the resolution N of DAQ without suppression of noise and 
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nonlinear distortion in analogue pre-processing circuit is purposeless. On 
the other hand, the number of N bits does not say much about the DAQ 
quality. 

Offset and gain errors belong to the numerical error characteristic and 
describe basic coefficients of the interpolated transfer function by 
straight line. The terminal definition of offset and gain error is based on 
the assumption that transition code levels at both ends of FSR are 
identical with the ideal ones      1 ; and 2 1 2 1N NT Q T Q    . Then 

gain G and offset Uoff of real transfer characteristic are defined as 
follows: 

  off

(2 2) 
  ,             1 . (1).

(2 1) (1)

N

idN

Q
G U T G T

T T


  

 
 (4.4) 

There are many others error parameters describing error features of DAQ 
which are important for the special implementation. They include 
dynamic error parameters or parameters describing possible errors in 
monotonicity of transfer function. More detailed list of error parameters 
are presented in the standards [1, 3]. 

4.2.2. Standardized DAQ Testing Methods 

Testing methods of whole DAQ are almost identical with those for ADC. 
According to standards [4, 5] the testing methods are categorized in two 
groups; static and dynamic. 

Static tests use known calibrated DC voltages at the input of DAQ under 
test. The voltages must be set up close above and below the expected 
T(k) under test. The automatic test procedure evaluates the statistics of 
the occurrence of mutually adjacent codes for both voltages. The value 
of measured T(k) is calculated by linear interpolation as voltage where 
the occurrence probability of both code k and (k + 1) is the same. 

The alternative static testing method utilizes feedback from the output of 
digital comparator comparing the chosen code k and the DAQ output. 
The comparator output controls the analogue integrator generating 
triangular voltage feeding the DAQ input. The generated triangular wave 
is centered around the real transition code voltage T(k) and it is measured 
by an accurate DC voltmeter. 

Dynamic DAQ test methods are performed by alternating testing voltage 
with the metrological precision corresponding to the resolution of tested 
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DAQ. The common test stand is shown in Fig. 4.2. The highest 
achievable accuracy is the reason why standards for dynamic testing 
consider harmonic signal as appropriate testing signal only [3]. 
Nonlinear distortion of testing signal can be suppressed by an additional 
low pass filter. Requirements on the harmonic distortion suppression 
increase proportionally to the DAQ resolution. The peak value of the 
testing harmonic signal can be measured by a calibrated AC voltmeter. 

 

Fig. 4.2. Block diagram for dynamic testing. 

The dynamic DAQ testing methods  are: 

 The FFT test method (analysis in frequency domain); 

 The method of the best fitted sinewave (analysis in the time domain); 

 The histogram test (statistical analysis). 

Digital data from the output of tested DAQ are registered and processed 
in the control computer. High frequency components generated by the 
DAQ nonlinearity are evaluated by transformation of the output signal 
into the spectral domain within the FFT test method. The ratio between 
the effective value of high frequency components together with 
background noise and the effective value of the basic component allows 
determining numerical parameters including ENOB, SINAD, etc. 

The best fitted sinewave is based on fitting testing sinewave digitized by 
DAQ by the least square or maximum likelihood estimation. The 
deviation between the fit and record samples is supposed to be the 
distortion signal, which is used to calculate error. 

The histogram test provides information about occurrence of chosen 
code bins k in the output record as compared to the ideal histogram. The 
ratio between both values is proportional to the differential and integral 
nonlinearities. 

ADI under 
test 

Testing signal 
generator

Control 
computer

Band-
pass 
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Selection of testing sine wave frequency and sampling frequency is very 
important. The evaluation of the DAQ transfer characteristic is more 
accurate for the increasing amount of the output samples, representing 
each output code. The sampling of a periodic waveform such that the 
total number of samples M in the data record, correspond to an integer 
number of cycles J of the input waveform. In order to use the fast Fourier 
transform algorithm the number of the cycles J should be a power of 2. 
Coherent sampling requires satisfying the following relationship [1, 2]. 

 ,Sopt inJ f M f    (4.5) 

where fSopt is the optimal sampling frequency and fin is the testing sine 
wave frequency. Parameters J and M should be mutually relative prime 
numbers. Two integers are relatively prime, when their ratio is 
irreducible; i.e., their greatest common divisor is 1. The fulfilment of this 
condition is possible by a phased locked loop. In the reconstructed 
course, monotonicity and impulse failure are manifested. The sources of 
these errors are the missing codes, noise and hazards in DAQ transfer 
characteristic. In addition to random errors, systematic errors are 
represented by nonlinearities and offset and gain errors. 

The reader can find detailed information about standardized test 
procedures in [2] and [3]. 

Standardized test procedures require calibration generators and 
measuring instruments with high metrological precision and they are 
time-consuming. Moreover, according to general metrological rules the 
testing instruments must not be used for other tasks. The metrological 
requirements imposed on these laboratories increase exponentially with 
the resolution N of the digital output. In particular, DAQs with more than 
16 bits require specialized test laboratories. On the other hand not all 
DAQ error parameters are required by all end-users. 

The alternative to standardized test methods are methods based on error 
models. Error models describe DAQ using typical error behavior in 
signal conversion. The testing methods based on the error model 
identification seem to be more advantageous in comparison to the 
standardized ones. 

This testing approach is similar to that used by an experienced operator 
of a measuring instrument. Knowledge of instrument behaviors – its 
error model – helps operators to select the important points in the 
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operating range of a utilized instrument for the recognition of 
characteristic error values. DAQ can be tested by the signal, which is 
easily generated with required precision. The estimation of the error 
parameters from the specific measurement corresponds to the 
identification of error model parameters and belongs to the  
non-standardized testing procedures. 

Because of increasing resolution and quality of DAQ, end-users may 
focus on the dominant error sources in the chosen error models. The  
non-standardized DAQ testing procedures allow performing the test 
faster and by general purpose laboratory instruments. 

4.3. Testing of DAQ Based on the Error Model 
Identification 

Error models of DAQ represent a comprehensive, yet concise tool 
presenting the impact of the real APB together with ADC at the output 
of whole DAQ as crucial component determining the metrological 
quality of the signal conversion between analog and digital domains. The 
functional error parameters are the necessary basis for designing any 
proper error model. 

Identified error models of DAQ are suitable for: 

 Description of real DAQ in CAD simulators as a subcircuit for the 
assessment of uncertainty of the whole system and for the evaluation 
of the implemented post-correction procedure [22]. 

 Estimation of integral error parameters of DAQ, such as THD, 
SINAD, ENOB etc. by simulation for any stimulus signal [4, 5]. 

 Implementation of those in the post-processing procedures with the 
focus on the suppression of systematic errors in the acquired signal 
[6]. 

4.3.1. Error Models 

Error models  can be classified into two main groups: architecture 
dependent models and behavioral error models (Fig. 4.3). 
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Fig. 4.3. Classification of the DAQ error models. 

The architecture depended model comes from knowledge of the DAQ 
internal architecture. Behavioral models are based on known errors in 
conversion process without relation to hardware realization of DAQ. 

4.3.2. Architecture Depended Models 

The most accurate architecture dependent models utilize electrical 
modelling on the circuit-level. These models comprise circuit 
components, interconnections among them and utilized technology with 
its impact on the component parameters. Resultant models are included 
in the Computer Aided Design (CAD) software tools. 

Structural error models describe DAQ error characteristics through 
simplified equivalent circuits or functional blocks. They represent a 
compromise between accuracy resulting from the circuit level 
description and simplicity based on knowledge about hardware blocks 
influencing dominantly error parameters. While static models 
characterize the converter under a constant input signal, the dynamic 
models consider an input signal with constant slope s. Time variation in 
the input signal is often suppressed by the sample and hold circuit at the 
input of ADC or by short time conversion. 

The deviations of transition code level T(k) in the final transfer 
characteristic are manifested by patterns in the resulting straight-line 
characteristic and they are caused by the DAQ architecture. Analog 
processing of input signals x is a common feature of any DAQ 
architecture. Various modifications of integration ADCs in DAQ convert 
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linearly output from APB into the intermediate frequency fx or period Tx 
of the pulse signal. Integrating ADCs may operate also with multiple 
slopes. Various versions of ∑ ADCs represent an alternative type of 
integrating ADCs. Conversion into frequency or period is performed by 
the analog circuit blocks. All signal operations here are impacted by 
continuously distributed error. The output code k is achieved by the 
digital counter of frequency fx or time period Tx. The clock frequency 
shift is only one possible error source in the digital counter and it can 
influence the gain of ADC only. The optimal analytical error function of 
integrating ADCs is represented by polynomial of L-the order. 

Compensating ADCs represent the second group of ADC architectures. 
Here the output signal from APB is converted into the digital code k by 
compensating – weighting principles. Examples of compensating 
structure are successive approximation, pipeline or various 
modifications of cyclic ADCs. Their main advantage is faster conversion 
in a few steps in comparison with the previous group. Inaccuracy of the 
compensating weighting voltages generated by DAC in the feedback has 
an additional impact on the error characteristic. The compensation 
principle determines the prevalent non-continuous error function pattern 
characteristic for a specific type of compensating ADCs. Characteristic 
error patterns are superimposed to the continuous error component 
caused by APB in the final error function. 

Conversion structure where each code level is determined by a different 
component is typical for parallel ADCs. Conversion speed is the main 
advantage of these ADCs. The error sources in the ADC structure are not 
apparent with the regular causalities in the error functions. Rough and 
accurate conversion in few steps is a certain modification of the parallel 
structure. 

Table 4.1 shows prevailing error characteristics of main representatives 
of ADC architectures utilized as an output block of any DAQ [4, 6,  
8, 10]. 

4.3.3. Behavioral Error Models 

The input-output characterization of the transfer characteristic by the 
behavioral model meets the main goal of error modelling – simplified 
description of error characteristic over FSR. Architecture based models 
allows to choose optimal behavioral description of the error model. 
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Table 4.1. Prevalent functional error characteristics of ADCs. 

ADC architecture 
Prevalent functional 
characteristic  

Full-Flash ADCs 
(one step conversion cycle) 

Random function 

Integrating ADCs, (one, dual slope),  
ADCs, Voltage to Frequency Converters  

Polynomial function 

N-bit Successive approximation ADCs  
Rademacher function with N 
code frequencies 

Pipeline ADCs, Cyclic Flash ADCs,  
with R-cycles  

Periodical function with R 
code frequencies.  

 

The simplest way of the behavioral error model is the look up table [12]. 
It is represented by the table where the code k from the DAQ is its input. 
The measured values of INL(k) or DNL(k) by the standardized tests are 
the outputs. The look up error model contains 2N data among which many 
are redundant. Requirement on the memory capacity is one drawback of 
the model implementation in digital signal post processing. The look-up 
table contains error parameters for all code bins, which are measured by 
the standardized testing procedures. Such huge amount of memorized 
data does not provide the main benefit of error modelling, which is the 
concentrated description of the major error parameters. 

4.3.3.1. Unified Error Model 

The progress in the electronic technology is aimed at suppression of error 
sources in the analog blocks and reduction of errors caused by the 
process of analog to digital conversion. Custom design of DAQ by a 
system integrator particular application utilizes various components of 
different producers and it is implemented under specific operational 
conditions. A limited possibility how to reduce parasitic influence of 
external error sources (temperature, operational conditions of the analog 
parts, etc.) and interfering parasitic sources requires final error testing. 
The evaluated error model description in the mathematically concise 
form is a suitable tool for data correction by digital processing. The 
optimal form to describe error function is a unified error model of DAQ. 
It expresses the error function as one dimensional image of the code 
which consists of two components [13]: 
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a) The low code frequency component (LCF), which is represented by 
the polynomial approximation LCFINLm(k) of L-th order. The 
approximation of the polynomial function is obtained from the 
measured INL(k) values in the L1 nodal points  
k<k1,k2,..,kL1

>. The most suitable approximation uses the Least 

Squared approximation. 

b) The high code frequency component (HCF) HCFINLm(k) is formed by 
significant deviations of the differential nonlinearities DNLm(k) from 
the mean value. The code bins with significantly different 
nonlinearities have both the regular occurrence of the modeled 
values of DNLm(k), and a random appearance. The periodical 
occurrence of nonlinearities is based on the ADC structure. The HCF 
component is able to cover even the nonlinearities out of the regular 
occurrence. It allows to model nonlinearities DNL(k) which 
significantly exceed the average differential nonlinearity over the 
whole FSR. 

The shape of the integral nonlinearity using both components can be 
modeled as follows: 

 

     

 0 1
0

.. .

LCF HCF
m m m

k
L HCF

L m
i

INL k INL k INL k

a a k a k DNL i


 

    
 (4.6) 

While the component LCFINLm(k) represents the continuous nonlinearity 
of the DAQ, the superimposed HCFINLm(k) component describes major 
discontinuities in the nonlinear function. The measurement of 
differential nonlinearities DNL(k) by a histogram is the easiest way how 
to estimate HCFINLm(k) component. 

Behavioral error models using close mathematical formulas are based on 
Chebyshev´s series or sum of harmonic functions associated with code k 
[18, 19]. Drawback of such models is hard requirements for 
identification of the error model parameters. The identification requires 
harmonic testing signal with metrological quality in a wide  
frequency range. 
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4.3.3.2. Error Model Identification Using Nonstandardized 
Signals 

The main advantage of the testing method based on the unified error 
model identification is a possibility to use the testing signal with the 
reduced amplitude and adjustable offset. The amplitude reduction results 
in the proportional reduction of nonlinear distortion of the testing signal. 
This way, the general-purpose laboratory generators of triangular voltage 
can meet metrological requirement for testing signal. The error function 
is measured by the repetition of histogram tests in successive sections 
along FSR. Moreover, appropriate selection of FSR segments allows to 
estimate dominant characteristic patterns in the HCF error component or 
LCF errors in the crucial points of FSR. 

The conceptual block diagram of the testing generator, which meets the 
requirement of all testing steps is shown in Fig. 4.4. Triangular voltage 
source results in the simplest mathematical formulas. The peak-to-peak 

value of triangular testing signal is reduced by the R2/(R3||R1) ratio and 

offset X0 by the R1/(R3||R2) ratio, respectively. 

 

Fig. 4.4. Block diagram of stimulus signal generator with reduced amplitude. 

Before the test with reduced triangular signal the preliminary histogram 
test with triangular signal of peak-peak value over FSR must be 
performed. The goal of this first rough test is to estimate code bins kH 
with an extreme value of the DNL(kH). Moreover the selection of code 
bins kL less influenced by the remarkable discontinuities in INL shape 
has to be performed. The discontinuities around the code bins kL increase 
the uncertainty of the LCFINL(k) estimation. [13, 17]. 

In the second testing step the LCF component is measured by the 
triangular signal with reduced peak-to-peak value Xpp around the DC 
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value X0. The rising half period of triangular signal with M1 samples can 
be described by the following formula. 

  
1

0
1

( )2 .
pp

Mi X
x i X

M


   (4.7) 

The mean value of the triangular voltage is adjusted using a DC generator 
with an accurate DC voltmeter on the ideal transition code level  
Tid(kL) = (kL + 0.5)Q (Fig. 4.2). Let’s implement integer number of 
triangular signal periods J with total amount of M samples. In order to 
achieve signal ergodicity, the number of periods J and samples M must 
be mutually relative prime numbers. The histogram P(k) of the output 
code k in case of an ideal transfer function is symmetrical around value 

kL. The mean value Lk  of the histogram measured for the real transfer 
characteristic is shifted by the value of LCFINL(kL) from the ideal code  
kL position. 

  .LCF
L L Lk k INL k   (4.8) 

The LCFINL(kL) is obtained from the mean value Lk  from the ADC 

output codes k for one testing sequence by 

   .LCF
L L LINL k k k   (4.9) 

The modelled LCFINLm(k) component along the FSR is estimated by the 
L-th order polynomial approximation of measured LCFINL(kL) values in 
L1 equidistant distributed code bins kL. The polynomial order L must be 
lower than L1. Only X0 value is the parameter which must be known with 
metrological accuracy using set-up in Fig. 4.2. Peak-to-peak value Xpp of 
the input voltage must be stable during measurement LCFINL(kL) for one 
code bin kL. 

The third test step represents the estimation of the HCF component by 
the histogram test with the same triangular voltage covering code bins kH 
with remarkable differential nonlinearities. The code bins kH were 
chosen in the first step. The differential nonlinearity of any code bin kH 
is calculated from the histogram. If the number of samples in one testing 

sequence is I, then the probability of kH in the ideal case is QI/XPP
. Let’s 
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suppose that the occurrence of samples with value kH in the real 
histogram is H(kH). The modelled differential nonlinearity in the code 
bins kH is determined by the formula 

  
( )

( ) 1 .
H

PP PP
m H H

PP

QIH k X X
DNL k H k

QI QI
X


    (4.10) 

Differential nonlinearities, below the remarkable value are neglected. 
The setting of DC component ao = 0 allows to meet the condition of the 
terminal definition INL(0) = 0 at the beginning of FSR. The linear 
component in modelled INLm(k) is set to meet the second condition of 
terminal definition INL(2N – 1) = 0. It covers even the situation, when the 
sum of the modelled differential nonlinearities along the FSR is not  
zero [2]. 
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 (4.11) 

An alternative test method is based on the use of the sinewave instead of 
the triangular signal. The disadvantage of the sinewave is the need for 
more complex mathematical formulas for calculation of both 
components from the measurement results [15]. 

Another alternative to achieve the signal with accurate shape is the 
simplest generating circuit without any active components [14]. A 
discharging RC circuit generates high accuracy exponential signal. The 
low dielectric absorption of the discharging capacitor secures that the 
only dominant exponential component is generated. Multilayer organic 
dielectric capacitors MLO™ are known by the extremely low dielectric 
absorption (DA  0.0015 %) [21]. Even capacitors with teflon or 
polypropylene dielectric (WIMA capacitors) allow to generate almost 
ideal exponential signal. The histogram from the registered samples H(k) 
and its analytical estimation for the best fitted exponential shape 
determines the differential nonlinearity DNL(k) for any code level k is 
another way how to meet the condition of ideal exponential pulse. The 
principle of the stimulus signal generator with galvanic isolation from 
the control unit is shown in Fig. 4.5. 
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Fig. 4.5. Circuit generating exponential stimulus signal. 

The analytical expression describing the discharging voltage is 

  IN .
t

RC
DC DCx X X X e


    (4.12) 

The differential nonlinearity of DAQ under test is estimated from the 
histogram of the registered samples using the well-known formula: 

 ( )
( ) 1 ,

( )id

H k
DNL k

H k
   (4.13) 

where H(k) is the actual number of samples received in code bin k, and 
Hid(k) represents the number of histogram samples for ideal DAQ (13). 
The data stream from the DAQ output in the ideal case (Fig. 4.6) is 
represented by the formula: 

  m.eround)( ABmx  , m = 0,…,(M-1). (4.14) 

Coefficients B, A and  are defined by formulas 

 1
; ; ,DC DC

S

X X X
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Q Q RCf


 
    (4.15) 

where Q is the averaged code bin width and fS is the sampling frequency. 
The mathematical operation round (.) round its argument to the nearest 
integer number. Let’s the total number of acquired exponential samples 
with values k   1, 2N – 2  be M. Then the number of histogram 
samples in ideal case Hid(k) for the code bin k is determined by the 
formula 

    ln 1,...., 2 2
1

,Nk BM
H k for kid k B
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 
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 (4.16) 
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where N is the number of bits of DAQ. The parameters A, B and  can be 
calculated by a fitting procedure from the acquired data using the Least 
Square fitting method. It allows to suppress possible in the presence of 
superimposed exponential components caused by residual dielectric 
absorption of the discharging capacitor. The differential nonlinearity 
DNL(k) is determined by (4.14) and the integral nonlinearity INL(k) can 
be calculated by its summing (4.2). 

 

Fig. 4.6. DAQ data record for exponential stimulus signal. 

The accuracy of determining DNL and INL for each code bin k depends 
on the number of samples M and on value B. The first estimation of a 
minimal number of samples M for the required accuracy of DNL and for 
the full-scale range of ideal ADC can be determined by: 

  
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N
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   


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 (4.17) 

where ε is the minimal required uncertainty of DNL in LSB [21]. 

The histogram test method by the unidirectional exponential stimulus 
identifies the high code frequency component very effectively. On the 
other hand it partially masks the low code frequency component. This 
phenomenon is caused by the property of least mean square masking 
local ripples in measured LCFINL(k). Periodical exponential stimulus with 
both slopes (Bi-directional stimulus) prevents the above mentioned 
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masking effect and improves the accuracy of the histogram test method. 
Another advantage of the periodical exponential stimulus signal with 
both slopes is the symmetry of the acquired histogram around center of 
the FSR. It creates a symmetrical cumulative histogram around the FSR 
center. The proposed symmetrical exponential stimulus x(t) gives the 
possibility to build it on chip as a sub-circuit for auto-testing. 

Samples at both ends of the full scale range – FSR are difficult to define 
by the exact analytical expression. The inaccuracies in the analytical 
expression are caused by switching effects of the excitation rectangular 
signal at the input of the forming RC circuit. Therefore the marginal code 
bins should be excluded from the output data record for the histogram 
processing. 

Analytical expression for bidirectional exponential signal with known 
values x(t1) = F2, x(t2) = F1, x(t3) = F1 and x(t4) = F2 of output voltage for 
time instances ti, i = 1,..4 (Fig. 4.7) is 
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 (4.18) 

 

Fig. 4.7. Bi-directional exponential stimulus signal. 

Here  is the time constant of the exponential signal. Thresholds F1 and 
F2 represent a full-scale input range of DAQ under test and Br, Bf are the 
final voltages of exponential signal for t   the rising and falling 
sections of the exponential shape. 
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The cumulative probability Pf(x), Pr(x) for the rising and falling sections 
respectively can be derived from (4.1) for any value of  and B under the 
condition Br > F2 and Bf < F1. 
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  (4.19) 

Let’s suppose that code bins k = 0 and k = (2N – 1) are excluded from the 
output record. The utilized histogram for INL(k) and DNL(k) testing is 
determined for (2N – 2) input voltages T(k) = (F1 + kQ), where Q is 
averaged code with and k = 1, 2,…, (2N – 2). Ideal cumulative probability 
Pid(k,Bfr) are determined by the analytical expression (4.19), where just 
coefficients B are different for the falling and rising part. 
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The consider number of samples with code value k acquired in the 
histogram test is equal to H(k). The error resistant approach estimates 
integral nonlinearity using the cumulative histogram from the output 
record for the rising and falling section of bi-directional exponential 
signal. It is more robust to the superimposed noise and harmonic 
interferences. Let’s consider H(Bfr) is the total number of hits acquired 
in code bins k = 1, 2,…, (2N – 2), separately for rising and falling section 
in the recorded data. The acquired cumulative probability P(k,Bfr) from 
the histogram testing for both sections is 
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Parameters Bf and Br in (4.21) and (4.22) must be estimated by least mean 
squared fit by ideal cumulative probability functions P(k,Bf) and P(k,Br) 
from two separate histograms for rising and falling sections. Applying 
individual independent estimation of Br, Bf constants will lead to two 
different integral nonlinearities: INLr and INLf for the rising and falling 
section of the acquired histogram: 
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(4.22) 

Integral nonlinearity INL is an inherent parameter of ADC, and should 
be the same for any slope of the test stimulus. Under this consideration 
INLr and INLf have to be close to each other. Hysteresis of currently 
produced ADCs is negligible. The only possible source could be 
improper operational conditions and interconnection errors in the analog 
processing block. 

4.4. Experimental Results 

The methods presented above were verified by experimental tests. The 
equivalent standardized test procedure was taken for the reference test. 
National Instruments DAQ boards were used as DAQ systems under test. 
The results achieved by methods using the triangular test with reduced 
peak-peak value and bidirectional exponential stimulus are  
presented below. 

The first experimentally verified method was the triangular test with the 
reduced peak-peak value. The codes kH were chosen according to the 
position of the highest discontinuities in INL(k) acquired using a 
triangular testing signal overlapping FSR. 

The LCF component was calculated by the least square algorithm using 
the polynomial model (4.6) of the LCFINL(k) in the second step. The nodal 
points utilized in the second step were chosen to determine LCF 
component with the maximal accuracy. Two code values at both ends of 
FSR were added. The total number of selected nodes for the tested DAQ 
board (LAB-PC-1200) was nine (Fig. 4.8). 
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Fig. 4.8. Histograms for reduced peak-to-peak value triangular testing signal. 

The triangular testing signal with the reduced peak-peak value equal to 
30 code bins around kH was used in the third step. It allows to acquire 
histograms determining DNL(kH) with higher accuracy. Fig. 4.8 presents 
the obtained histograms from the triangular voltage with the reduced 
peak-peak value. Fig. 4.9 shows the modelled HCF component of 
integral nonlinearity HCFINLm(k) calculated for the chosen code bins kH. 

 

Fig. 4.9. Resulted HCFINL(k) calculated from histograms in Fig. 4.8. 

The final results of Lab-PC-1200 achieved by the proposed test method 
are shown in Fig. 4.10. It consists of the LCF and HCF components and 
it is compared with the INL obtained by the standardized method. 

 

Fig. 4.10. INL(k) of LAB-PC-1200 modelled by the unified error model. 
LCFINL(k) is modelled by polynomial of L = 4 order from 9 node points each 
calculated from 5000 samples. The superimposed HCFINL(k) component was 
estimated in the nodal points. 
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Integral nonlinearity testing by proposed unidirectional and bidirectional 
exponential stimulus signal was verified for the multifunction data 
acquisition module USB6009 with the 14-bit ADC resolution [13]. The 
INL achieved by the standardized histogram testing method using 
harmonic signal is shown in Fig. 4.11. 

 

Fig. 4.11. INL measured by standardized harmonic stimulus histogram test. 

The results for the periodical unidirectional and bidirectional exponential 
stimuli are shown in Fig. 4.12a and Fig. 4.12b respectively. The ideal 
cumulative probability and the measured probabilities were acquired 
using formulas (20) and (21) for the total number of processed samples 
M = 106. The difference between standardized harmonic stimuli 
histogram tests and periodical unidirectional and bidirectional 
exponential stimuli are shown in Figs. 4.13a and 4.13b respectively.  

 

   (a)                                                          (b) 

Fig. 4.12. INL measured by unidirectional (a) and bidirectional  
(b) exponential stimuli. 
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   (a)                                                     (b) 

Fig. 4.13. Difference between standardized test method and INL testing results 
measured by (a) unidirectional and (b) bidirectional exponential stimuli. 

The difference between INL from the standardized sinewave test and 
using exponential stimuli is smaller for the bidirectional exponential 
shape. A higher difference for the unidirectional exponential signal is 
caused by the decreasing number of hits in the processed histogram for 
higher code levels. The residual error for the bidirectional stimuli is 
caused by the imperfections in the generated exponential signal at both 
ends of FSR. 

The DAQ LAB-PC-1200 was utilized to compare the accuracy of INL 
testing using triangular and exponential stimulus signal. The presence of 
the exponential components caused by dielectric absorption was 
suppressed by the selection of Teflon WIMA capacitors. The integral 
nonlinearity INL was calculated from the measurement of DNL 
measured by the histogram test for periodic bidirectional exponential 
stimuli signal. The DAQ board has been set into the unipolar conversion 
mode. The total number of processed hits was M = 106 (Fig. 4.14).  

 

Fig. 4.14. INL(k) of LAB-PC-1200 measured from histogram test using 
periodic bidirectional exponential stimulus signal. 
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The measured INL is similar as shown in the dashed graph Fig. 4.10. 
Moreover, modelled INL shape in Fig. 4.10 follows the trend measured 
by the full histogram test using bidirectional exponential stimuli. The 
number of acquired samples M and corresponding long testing time is a 
disadvantage of full histogram test by the exponential stimuli. 

4.5. Conclusions 

The system integrator within designing the DAQ block connects the 
different circuit blocks produced by different manufacturers according 
to the needs of a specific signal acquisition task. Testing the designed 
DAQ system is the final phase of its system design. It requires specific 
metrological equipment and laboratories. On the other hand, not all DAQ 
error parameters are important for end users. 

Identification of error model parameters using easily generated signals is 
an option giving the system integrator or end user information about 
metrological reliability of measured data and characteristic error features 
of DAQ. It seems that the unified error model based on two components, 
the continuous error function and the component describing periodically 
or randomly occurring singularities covers almost all possible errors. The 
continuous function of low code frequency with superimposed high code 
frequency is a good balance between modelling accuracy and modelling 
complexity. The proposed testing approach is also suitable for cyclic 
autocalibration using testing subcircuit implemented on DAQ chip. 

The chapter presents selected nonstandardized DAQ nonlinearity test 
methods. The methods are based on the identification of unified error 
model parameters. These can be measured using nonstandardized test 
signals such as triangular and exponential ones. The ability of the 
proposed method was verified by the experimental tests in comparison 
with the standard test procedure. The test results based on the error model 
identification proved good conformity with the ADC testing standards 
and applicability in commonly equipped laboratories. 
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Chapter 5 

Affinity Aware Scheduler of Cluster 
Virtual Nodes on Clouds 

D. Yokoyama, V. D. Oliveira, M. Bandini, J. P. Barbosa, H. Kloh, 
R. Pinto, V. Rebello and B. Schulze5 

5.1. Introduction 

5.1.1. Motivation 

The increasing complexity of applications, particularly scientific 
applications, associated with the need to manage large amounts of data, 
is driving a growing demand for high performance and highly distributed 
computing architectures, such as cluster computing, in order to obtain 
solutions for these problems, within acceptable time constraints. The use 
of both cluster computing and parallel processing allows for the 
simulation and solving of complex problems which otherwise would not 
be achieved. 

However, cluster computing presents some barriers for its widespread 
adoption, such as the complexity of applying large scale distributed 
parallelism and the difficulty of accessing cluster resources, which is not 
trivial for scientist in general areas of interest. Cloud computing emerged 
as an alternative to deal with such issues, as it may reduce infrastructure 
maintenance costs and provide easier ways to experiment and develop 
parallel solutions [1]. 

Because of recent developments, such as hardware assisted virtualization 
in x86 processors, the cloud computing model, although not new, is 
attracting great interest from scientific communities. Cloud Computing 
attempts to solve problems such as power consumption and allocation of 
physical space in big data centers and Massively Parallel and  
Distributed Computing. 

                                                      
D. Yokoyama 
National Laboratory of Scientific Computing (LNCC), Quitandinha, Petrópolis, Brazil 
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Most existing cloud platforms depend heavily on virtualization of the 
computing resources. Virtualization allows for: a reduction of equipment 
purchasing costs, by taking advantage of underutilized facilities; a 
greater flexibility by using the same hardware for a range of applications 
running possibly on different operating systems; an increased stability 
and environmental safety, since a failure in a virtual machine will not be 
propagated to other virtual machines running on the same host. 
Observing the listed benefits, it becomes clear why clouds depend 
intrinsically on virtualization [2]. 

The increasing concern with the quality of services provided by cloud 
providers motivates research focused on developing mechanisms and 
methodologies to promote improvements in the way of allocating 
applications in these resources [3]. In this context, by knowing the 
resource consumption profile of applications, the virtualized 
environments and the effects caused by competition contributes to these 
efforts, in order to minimize performance losses. 

Applications in clusters are comprised of largely homogeneous tasks 
across distributed memory systems. These tasks, when isolated as virtual 
machine instances in a cloud computing environment, present great 
opportunities to analyze their relationship with other applications 
submitted to the same host and to allocate them accordingly. Thus, the 
objective of this work is to present an improved allocation of Virtual 
Machines (VMs) in a cloud infrastructure in support to scientific 
applications. This aims to reduce the costs of moving cluster computing 
applications to cloud computing environments, as well as to mitigate 
negative effects that arise from the competition for the same computing 
resources in a virtual environment. Thus, the benefits of cloud 
computing, such as scalability, elasticity and resource sharing, could be 
used by a cluster computing infrastructure. 

5.1.2. Methodology 

Based on the analyses of the interaction of different applications with 
different resource constraints, and through benchmarks and validation 
via simulations, this work proposes a scheduling model to improve cloud 
resource utilization. Currently the scheduling mechanism used in the 
cloud does not take into account how applications affect the overall 
system utilization, due to resource competition. This work proposes a 
model that takes this interaction into account in order to maximize the 
application throughput. 
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The co-allocation effect is measured throughout the execution of 
benchmarks with different performance characteristics. The impact of 
the hypervisor is overlooked by this allocation model. Although the type 
of hypervisor can affect performance, cloud environments tend to use a 
single Virtual Machine Monitor (VMM). To this end, the KVM 
hypervisor is used as the VMM in all experiments. KVM was chosen 
since it has shown to be well suited for applications that require intensive 
processing, in some cases supplanting the real machine [4, 5]. 

Simulations are performed using some traditional scheduling strategies 
and a proposed model based on affinities. These simulations have the 
objective of validating the model. Following this experiment, an affinity 
conscious scheduler is proposed. 

Based on the benchmarks and simulation results, the work presents a 
virtual machine scheduling algorithm to run Massively Parallel and 
Distributed Computing applications with intensive usage of: CPU, 
memory and IO. This scheduler uses two allocation techniques, the static 
and the dynamic. These two techniques refer to when decisions are made. 
In static scheduling, application profiles are previously known and, once 
allocated, virtual machines are kept on the same physical machine until 
the execution ends. However, in dynamic scheduling, one may not have 
initial knowledge about the characteristics of the application, so the 
profile of the resource usage may change during the execution. Also, 
applications reach the scheduler at different times. When the scheduler 
detects a behavior change in the application profile, it may decide to 
migrate the virtual machines in order to avoid the performance dropping 
of those sharing the same physical environment [6]. 

The work described is an extension of the research developed in [7] and 
[8]. The remaining sections are: Section 5.2 – Problem Specification: 
presents the relation between interference and affinity, detailing the 
complexity of virtual machine instance allocation in cloud datacenters 
and explaining the hypothesis under which this work was developed; 
Section 5.3 – Affinity Performance Evaluation: briefly explains the 
benchmarks and real applications used and the results that ascertain the 
interference among virtual machines in a host; Section 5.4 – Allocation 
Model: explains how affinity is used to decide where a virtual machine 
instance should be allocated; Section 5.5 – Evaluated Job Scheduling 
Strategies: briefly explains the scheduling methods used in this work, 
including standard scheduling policies, and the proposed model;  
Section 5.6 – Simulation of Scheduling Solution: makes use of 
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simulations to verify the hypothesis proposed by this work and, based on 
the results, proposes an affinity aware scheduling model;  
Section 5.7 – ProSched: The Affinity Aware Scheduler: presents the 
scheduling solution proposed by this work and the results of the 
experiments using an affinity scheduler; Section 5.8 – Related Work: 
presents a review of related works that deal with virtual machine 
scheduling and interference; Section 5.9 – Conclusion: summarizes the 
results achieved by this work and proposes future developments that 
could lead to a better use of cloud resources. 

5.2. Problem Specification 

In the context of this work, a cluster is a set of virtual machines 
instantiated at the time of execution of a specific application. These 
virtual machines are dedicated to solve a single distributed memory 
parallel job. The evaluated clusters use Message Passing Interface (MPI) 
in a distributed memory environment. 

Traditionally, a job represents the entire computational work that has to 
be processed by a cluster. However, in the context of this work, the term 
“job” is interchangeable with cluster in execution, i.e., the proposed 
model does not schedule jobs, but the entire system (virtual machines) 
that contains the said jobs. In other words, a job is composed of all the 
virtual machines loaded within the process to be executed. The term 
“task” refers to a job processing unit, therefore, task refers to the number 
of running virtual node instances. The term “instance” refers to each 
virtual cluster node created in the cloud computing environment. 

It is known that the total processing capacity of a computing system may 
vary greatly due to the interference of the applications running on the 
same host [9], the type of hypervisor (as it may be more suitable to one 
type of application, while another type may present significant losses due 
to the virtualization overhead), and so on. So, the total processing 
capacity may be reduced, depending on how the problems were 
allocated. Thus, the main focus of the proposed model is to find the best 
application combinations to reduce interference among tasks. Two 
applications that have fewer interference between them, due to the 
reduced impact of competition for resources in a host, are henceforth 
called “affine”. Therefore affinities, in the context of this work, are 
normalized values of the application performance when executed 
concurrently. An affinity of 1 represents two jobs whose competition 
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does not result in any negative effects in performance, i.e., zero 
interference. An affinity of 0 represents jobs that cannot be completed 
because of their competition. The affinity of n concurrent jobs is 
obtained, in this work, as the arithmetic means of a performance 
parameter of n jobs in parallel in respect to the same jobs when running 
isolated. Equation 1.1 expresses the affinity of n concurrent jobs 
(Aj1,j2,...,jn), where Pj1,j2,j3,...,jn is a measurement (time(t-1), flops, etc..) of job 1 
executing in parallel with the other n jobs.  

 . (5.1) 

The term affinity used in this work first appears in the work [10]. To the 
authors’ knowledge, [10] is the first time this term was used in this 
context. This term is employed in this work to denote tasks which 
cooperate better in a co-allocated scenario. 

5.2.1. Problem Analysis 

To better understand the contribution of this work, it is helpful to analyze 
the complexity of allocating jobs among many hosts. The problem can 
be summarized as: solving how to allocate a number of instances I on H 
hosts, each one capable of hosting at most li instances. Assuming that 
each host can receive from 0 to I instances, the analyzed problem is a 
weak composition. A weak composition allows for the inclusion of the 
identity(0). The composition of a positive integer s is given by the list 
consisting of all positive integers whose sums results in s. Thus, for 
example, let s = 3 C3 = 1+1+1;1+2;2+1;3, where C3 is the list of the 
composition of the number 3. The number of parts of the list of the 
composition of s is called length of the composition(n). Weak 
composition includes the digit 0, so the list is unbounded, adding zeros 
to the end of the sum. By limiting the number of digits we have a problem 
that better resembles the one treated in this work. The work of Page [11] 
presented the following definition: let n ∈ ℤ+ and s ∈ ℤ+⋃{0}, the weak 
composition C s,n is the set of any non-negative integer sequences  
σ = (σ0, σ1,..., σn-1), where σi ∈ ℤ+⋃{0}, and ∑I=0

n-1σi = s. From [12], the 
cardinality of |Cs,n| = (n+s–1 n–1 ). 

This abstraction of the allocation problem allows to analyze the 
maximum range of the addressed problem. Based on the work described 
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in [11], we assign restrictions on possible values of the parts of the sum. 
Let n ∈ ℤ+, s ∈ ℤ+⋃{0} and the restricted set R1, such that R1 ∈ ℤ+⋃{0} e 
0 ≤ R1 ≤ s. The first-order restricted weak composition Cs,n

(R1)n is the set 
of sequences of any positive integer σ = (σ0, σ1,..., σn-1), where σi ∈ R1, 
and ∑i=0

n-1σi = s. As an example, given the restriction 0 ≤ R1 ≤ 2: 

  (5.2) 

This definition differs from that presented in [11]. In the referenced work 
we have R1 ⊆ {0, 1,..., s}. For the problem addressed in this chapter, there 
is not a host capable of supporting two instances, for example, which is 
not capable of supporting only one instance. That is if H has li = n ⇒, H 
accepts I = {n, n-1, n-2,…, 0}. 

This improved abstraction still does not perfectly fit the problem faced 
by this chapter, since the restriction is imposed on all hosts similarly. 
Thus, again based on the referenced work, follows the final definition. 
Let n ∈ ℤ+, s ∈ ℤ+⋃{0} and the second-order restricted set R n

2, such that 
Rn

2 = (R0
1, R1

1,..., Rn-1
1), where 0 ≤ Ri

1 ≤ s. The second-order restricted 
weak composition Cs,n

R
n2 is the set of sequences of any positive integer  

σ = (σ0, σ1,..., σn-1), where σi ∈ Ri
1, and ∑i=0

n-1σi = s. This definition exactly 
matches the allocation problem addressed in this chapter. 

For example, given the restriction R3
2 = ({0},{0 ≤ R1

1 ≤ 2},{0 ≤ R2
1 ≤ 2}), 

meaning that the first host is full and the other three hosts can receive up 
to 2 instances, we have: 

 . (5.3) 

Thus, for the simple problem above, in all configurations, the first host 
cannot receive any instance, the second host can receive 1 instance if the 
second host receives 2 in the first configuration, or the second host can 
receive 2 and the last host 1 instance in the second configuration. So, we 
have two alternatives to allocate three instances. 

In [13], the author draws a similarity between multiset combinations and 
restricted compositions, and presents a way to calculate the cardinality 
of the problem. I.e., it is possible to devise a method to accurately 
calculate the scale of the addressed problem: by writing each host as a 
polynomial which order is given by the number of instances it can 
receive and the coefficients always equal to 1. The cardinality is given 
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by the monomial coefficient of degree n of the product of these 
polynomials. 

Thus, in (5.3), the first host generates the polynomial (l0), and two other 
hosts generate the polynomial (l0 +l1 +l2). So, we have the following 
product: 

 . (5.4) 

The cardinality of the problem taken as an example is the coefficient of 
the monomial 2l3, which is, 2. It should be noted that the first-order 
restriction assigned to each host can be conditioned both by the number 
of instances that each host can receive from the job, and the number of 
instances that comprise the job (Ri

1 = min(li,I)). 

From all the possible ways of carrying out allocations of instances, there 
may be a subset that improves the efficiency of the used infrastructure. 
If the cardinality of the allocation problem is much larger than the 
cardinality of the subset, pairing the instances in a host at random may 
result in under-utilization of available resources. As previously 
mentioned, due to the resource isolation, traditional scheduling policies 
can lead to interference among virtual machines. Thus, by analyzing 
affinities among virtual machines executing different workloads, and by 
allocating concurrent applications accordingly, their comparative higher 
affinities allow for increasing application throughput, improving 
resource utilization. 

5.2.2. Hypothesis 

In this work, we evaluate the effect of executing simultaneously multiple 
jobs, with different characteristics and needs. These characteristics can 
be related to: the consumption of main memory, the network latency, the 
bandwidth, the number of processing cores, among others. Assuming 
that the execution of the tasks that comprise the jobs will be influenced 
by how they are co-allocated. One can define how these tasks are 
allocated to achieve better performance. Confirming those assertions, it 
is possible to develop a task scheduling algorithm that allocates jobs, 
trying to optimize the usage of available computational resources, 
increasing the jobs throughput. 
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Thus, the sharing of resources by applications with different 
characteristics can present a performance degradation. But the severity 
of this degradation may depend on the requirements of each application 
and how it shares resources with other applications. 

5.3. Affinity Performance Evaluation 

A total of 5 benchmarks were selected: HPL, PARPAC Application 
Benchmark, b_eff, PRIOmark and IOzone. They are used to verify the 
relationship between the types of jobs running on an HPC environment, 
and the impact on performance caused by the concurrent use of resources 
for different types of applications. HPL and PARPAC are CPU intensive 
benchmarks while b_eff, PRIOmark and IOzone are I/O intensive. While 
b_eff is network I/O intensive, PRIOmark and IOzone are intensive for 
disk I/O. These benchmarks focus on important aspects that affect 
performance on HPC systems. 

Besides these benchmarks, two real applications were also evaluated: 
Montage and Blast. The use of these two real applications is to verify 
how the affinity between them, used in large scale for scientific studies, 
behaves and to ascertain if the results presented by the benchmarks can 
be used as a general model for classifying unknown applications 
affinities. Table 5.1 compares the characteristics of these applications. 

Table 5.1. Comparison of applications characteristics. 
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The HPL (High-Performance Linpack) is an implementation for 
distributed memory architectures of the popular Linpack Benchmark. 
The version used in this study was developed in 2012. The HPL is a 
software that solves a random dense linear system in double-precision 
on distributed memory computers [14]. 

HPL allows to check the real capacity of a distributed memory system to 
handle floating point operations. Although there are criticisms about its 
usefulness as a means of assessing the performance of a scientific 
computing system due to the analyses of only dense linear algebra 
systems [15], it is currently used as a measurement to rank the top500, 
list of the top 500 existing supercomputers. 

The PARPAC, b_eff and PRIOmark, were developed by the IPACS 
project (Integrated Performance Analysis of Computer Systems) [16]. 
IPACS was a project funded by the German Ministry for Education and 
Research in partnership with the Lawrence Berkeley National 
Laboratory and the German National Energy Research Scientific 
Computing Center. The goal of the project was to create a set of  
low-level benchmarks of applications and facilitate the execution of 
these benchmarks [16]. 

The PARPACBench is a dynamic fluid application based on the  
Lattice-Boltzmann method and is able to simulate a range of fluid 
dynamic problems such as transient and steady flow, multiphase flow in 
free surfaces and non-Newtonian fluids in two and three dimensions. It 
is thus a good representation of real applications of fluid dynamics [16]. 

According to [17], the b_eff benchmark measures the accumulated 
bandwidth of a parallel communications network and∕or distributed 
computing systems. The execution of b_eff as a network I/O benchmark 
shows that due to its algorithm, it also represents an intensive processing 
model, occupying 100 % of cores assigned to it. 

PRIOmark is a benchmark for disk I/O with the ability to characterize 
the performance of access to a secondary storage device [18]. Although 
there are numerous disk and file system benchmarks, few are able to 
verify the performance in a distributed memory system, an important 
factor in the analysis of systems for HPC. Thus, PRIOmark is used in 
this work to evaluate the performance of disk I/O in a cluster 
architecture. Tests are performed with two types of I/O, both using 
Network File System (NFS). In tests with common files, all tasks access 
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a file common to all process, whereas in tests with single files, each task 
has an exclusive file. 

IOzone is a benchmark tool for file systems. This benchmark generates 
and measures a variety of file operations. It is a useful tool to make 
performance analysis of various conditions usage of data storage 
devices. This synthetic application performs a total of twelve (12) types 
of operations and in this experiment all operations were used. The 
operations are: Read, write, re-read, re-write, read backwards, read 
strided, fread, fwrite, random read, pread, mmap, aio_read, aio_write. 

Montage was developed by the NASA/IPAC Infrared Science Archive 
as an open source tool to be used to generate custom sky mosaics using 
FITS (Flexible Image Transport System) images. During the application 
execution, it has shown that it has several profiles, demonstrating 
applications can change profile and not having only a single defined 
profile. The montage started as CPU Intensive, however in the middle of 
its execution it became Memory I/O Intensive. Approaching near the end 
of the execution, it changes its profile once again and becomes  
I/O Intensive. 

The BLAST (Basic Local Alignment Search Tool) is an application to 
compare information from primary biological sequences, such as amino 
acid sequences of different proteins or nucleotides of DNA sequences. A 
BLAST search allows the user to compare a sequence provided in a 
query with a sequence library or database, and identify the sequence 
strings that resemble the query sequence and are above a certain degree 
of similarity. During the BLAST execution, its profile was defined as 
CPU and Memory I/O intensive. 

5.3.1. Experimental Affinity Results 

The affinities measurements were executed in two experiments. The first 
set aims to assess affinities among synthetic benchmarks widely used for 
measuring performance in HPC systems: HPL and the selected 
benchmarks from the IPACS benchmark suit are used. These 
experiments aim to validate the affinity effect and use the measured 
values in a large scale simulation with different allocation models. The 
experiments used the KVM hypervisor for virtualization of resources. 
The infrastructure comprised a total of 18 hosts servers with two six 
cores Intel(R) Xeon(R) E5520 2.26 GHz processors, with 24 GB of main 
memory, an exclusive Gigabit Ethernet interface for MPI 



Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds 

143 

communication and Seagate Constellation ES storage ST3500514NS 
500 GB 7200 RPM 32 MB cache SATA 3.0 Gb/s. The environment was 
configured to eliminate the use of virtual memory. The communication 
of this cluster uses a dedicated Planet GSW 2400 Gigabit Ethernet 
switch. Thus, when performing an experiment of, for example, 108 MPI 
process, 18 virtual machines instances are created with six cores, one on 
each host. No virtualization layer level optimization was done, and the 
created virtual machines use the KVM’s default settings. 

First, 30 experiments were performed on each isolated job, which served 
as a basis for comparison with the parallel experiments. Subsequent 
parallel experiments were executed at least 30× for the longest running 
of two applications. That means, for instance, that while HPL takes hours 
to finish, b_eff only takes minutes, and so to complete 30 parallel runs 
of HPL, b_eff was executed hundreds of times. 

Table 5.2 contains the consolidation of the affinities calculated for the 
concurrent execution between two jobs of the applications assessed. The 
last column contains the UNKNOWN class. When a job cannot be 
categorized, for now, it receives the default affinity value of the inverse 
of the parallelism level, in this case 1/2. This value will be used in the 
simulation to represent applications whose affinity values have not been 
measured. This can be addressed by using categories of applications with 
a default affinity value, in case it is possible to classify applications with 
affinity in this way. 

Table 5.2. Affinities obtained in concurrent execution of benchmarks  
in virtual machines. 

 
 

The second set of experiments have a reduced scale, as its goal is to 
further assess the affinity effect between co-allocated applications and 
use the computed value for an affinity matrix as knowledge for the 
developed scheduler. Further experiments will verify how the scheduler 
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behaves having an affinity based knowledge to allocate task as well as 
using live-migration to avoid negative impact of low affinity  
co-allocated tasks. Thus, this experiment used a reduced infrastructure 
composed of 3 real servers with Intel(R) CPU X5650 2.67 GHz  
(12 cores), 16 GB RAM, 1 TB HD (7200 RPM), Ubuntu Server  
14.04 LTS as operating system, Gigabit Ethernet network. It also uses 
the KVM hypervisor. On each real server, a maximum of 2 virtual 
environments are allocated. This is to evaluate the affinity between two 
virtual machines competing for real resources. These virtual machines 
have been configured as follows: 4 virtual QEMU cores, 6 GB of RAM, 
20 GB Virtual HD and using Ubuntu Server 14.04 LTS as operating 
system. For each experiment, 30 executions were also performed. 

The applications used in this work were chosen because they present 
distinct profiles usage of computational resources: HPL  
(High-Performance Linpack benchmark) is a CPU intensive synthetic 
application that can be memory intensive depending on the size of the 
input array; IOzone is an intensive disk IO application that performs 
operations on a file system; BLAST (Basic Local Alignment Search 
Tool) is a real application used in the biology filed and it presents 
intensive use of memory; and Montage (Image Mosaic Software for 
Astronomers) is a scientific application used in astronomy whose profile 
of resource consumption varies in intensity over time, which validates 
the hypothesis that applications’ consumption may change in the course 
of execution. 

Table 5.3 presents the result of the second set of affinity experiments. 
This matrix is used by static scheduling, which uses prior knowledge to 
better allocate applications from a run queue. It should be noted that the 
discrepancy between the results of the HPL co-allocated task between 
the two sets of experiments results from the overhead of communication 
present in the first set where a total of 18 nodes were used in a distributed 
memory system. 

Table 5.3. Affinity Matrix between applications (the bigger the better). 
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The applications used in the second set of experiments were chosen to 
stress the use of one intensive computational resource. This allowed the 
simplification of the affinity matrix of the applications for the creation 
of a new, more generic matrix, based on the computational resources like 
CPU, Memory allocation and disk IO, as can be seen in the Table 5.4. 
This generic array is used by dynamic scheduling, where the 
application’s profile may not be known, causing the scheduler to make 
decisions at runtime. 

Table 5.4. Affinity Matrix based on computational resources. 

 
 

Table 5.4 is used by the scheduler to allocate and migrate these 
applications after analyzing the resource consumption histories  
of the applications. 

5.4. Allocation Model 

In the allocation model presented, the full amount of processing 
capability is taken as the “main feature” for high-performance computing 
environment, and how the applications with different characteristics 
affect the overall throughput of jobs. 

For this first model, jobs are evaluated with 4 of the benchmark 
experiments HPL, PARPAC, PRIOMark, B_EFF and applications of 
UNKNOWN affinity. While the affinities for known applications are 
obtained with the experiments. For those submitted jobs whose 
characteristics are not known, the used value is 0.5. 

When a new job is submitted for execution, instances of virtual machines 
are allocated in the hosts. This is done by looking for the available host 
with the best affinity (i.e. > 0.5 for two jobs, > 0.3 for three jobs). Thus, 
by allocating two parallel jobs with affinity higher than 0.5, the 
environment will finish the two jobs faster than waiting for a job to finish 
before starting another, even if this means that the job that was running 
previously will take longer to finish (in the case of affinity < 1). 
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Thus, the cutting point for the allocation of concurrent jobs into the 
adopted model is the inverse of the number of co-allocated jobs. In the 
previous example, in order to run with a level 2 of parallelism, the cutting 
point is 1/2. For three jobs, the cutting point should be 1/3, and so on. 
However, despite this rule to optimize the use of the infrastructure, when 
dealing at high levels of parallelism, this cutting point value may 
represent a very large backlog of jobs to process. Thus, one must 
examine to what extent it is possible to increase the throughput at the 
expense of the performance of an application Quality of Service (QoS). 
Also, if live-migration may occur, the value should be higher to account 
for migration overhead. 

While the experiments in this work were limited to the parallel execution 
of only two jobs, the model is trivially extended to implement n jobs in 
parallel. For this, it becomes necessary to execute the experiments and 
to create an array of dimension n. That is, the dimension of the array is 
given by the number of parallel tasks, and the cardinality is obtained by 
the number of interest groups. For example, for a system that supports 3 
concurrent applications and in which there are 2 different types of 
applications, an affinity array of 2×2×2 is needed. When there is no 
possibility of cores over allocations, as is the case in this work, the 
maximum size of affinity vectors is given by the highest number of cores 
available in a host. 

Note that, for dimensions > 2 and/or cardinality ≫  2, the complexity of 
the scheduling algorithm scales exponentially, and the execution of the 
experiments to evaluate affinities will be difficult to implement. One way 
of reducing this problem, particularly critical in the dimension of the 
array, is to define a minimum number of cores per instance. For example, 
if the maximum number of cores per host, in a homogeneous system, is 
12, we can define the minimum number of cores per instance as 4 or 6. 
In this way, the dimension of the vector is restricted to 3 or 2, 
respectively. The collateral effect of this artificial method of dimension 
restriction is the possibility of creating instances with underutilized 
cores. Another way to simplify the scheduling algorithm is to have a 
well-defined interest group of application profiles, restricted to real cases 
that may come up during scheduling as is implemented by the proposed 
scheduler. This group must be created specifically to account for the 
researches that make use of the platform. With a well-defined interest 
group, cardinality can be greatly reduced without increasing the number 
of jobs classified as unknown. 
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There are some special cases when the total throughput of jobs may be 
sacrificed in order to avoid jobs waiting indefinitely to run (starvation). 
An example is when a job has low affinity with all others jobs running 
on the environment and there are no machines onto which this job can 
be allocated exclusively. If nothing is done, this job may wait indefinitely 
for resources in order to execute. Thus, to avoid the job starvation, the 
scheduler uses an aging strategy that should be taken into account in the 
job scheduling. A job has an age value that is incremented every time 
computing resources are found available. However, to achieve the best 
throughput, the job is not allowed to run. When the job reaches an age 
limit, it is allocated to the available resources, even if it results in a lower 
environmental performance. Still, the algorithm searches for the best 
available affinity, and, only in this case, values below the cutting point 
are considered acceptable. 

5.5. Evaluated Job Scheduling Strategies 

Initially, we analyzed four job scheduling strategies. The FifoScheduler 
model allocates jobs in order of arrival, blocking the scheduling of 
subsequent jobs until there are sufficient free resources to run the first 
job in the queue. The FirstAvailableScheduler allocates instances as 
soon as available resources are found, with backfilling. The 
RoundRobinScheduler scheduler allocates resources in hosts one after 
the other, as soon as there are available resources, and it also has 
backfilling. Finally the AffinityAwareScheduler allocates jobs by 
affinities, also performing backfilling. 

The allocation model presented in this work considers that none of the 
schedulers described above allows for the over allocation of resources, 
i.e., the ratio of number of cores and tasks is no more than 1:1. In the 
case of RAM memory, the sum of the memories of virtual instances must 
not exceed that of the total available memory in the host. 

All algorithms presented as scheduling solutions have a particular 
shortcoming, with exception of the FifoScheduler. Aiming to improve 
the utilization of available infrastructure, the others schedulers try to 
insert as many jobs as possible for parallel execution in the environment. 
A fact in favor of smaller jobs, i.e. those requiring fewer instances, fewer 
cores and fewer memory. The FifoScheduler avoids this problem by 
allocating jobs in order of arrival and blocking until available resources 
are found meeting the request of the next job in the queue. Another 
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positive aspect of this scheduler is its upper limit of complexity in the 
allocation of a job at h available hosts O(h). 

The FirstAvailableScheduler acts in a similar way to the FifoScheduler, 
but enabling backfilling. By doing so, it has the same upper limit of 
complexity of the FifoScheduler, O(h). The behavior of this model, 
compared to the FifoScheduler, will be dependent on the affinity of the 
jobs involved. In cases of low general affinity, the model of the 
FirstAvailableScheduler tends to behave less satisfactorily, since using 
every available resource maximizes the parallelism, but will also suffer 
a greater impact of low affinity. The contrary is also true, i.e. by 
maximizing the parallelism of jobs with good affinity, the throughput of 
jobs will be higher. 

The RoundRobinScheduler algorithm tries to allocate the maximum 
possible instances without concurrency, in order to reduce the impact of 
parallelism in a host. This is due to the fact that, usually, the parallelism 
will negatively affect the job execution, even if the sum of the 
performance metric for parallel execution is greater than the sequential 
execution of these jobs, leading to reduced QoS. However, this gain may 
be insignificant in situations where many jobs are in the run queue. In 
this scenario, the exclusive resources will be quickly exhausted, turning 
into parallel execution of jobs. Another negative aspect of this strategy 
is the upper limit of the time complexity of the model. For a job 
composed of i instances for the allocation in h hosts, in the extreme 
scenario where the last analyzed host has resources for i instances and 
only it has free resources, and so we have O(h*i). Its worst-case spacial 
complexity is still obtained based on the number of hosts. 

Finally, the last presented algorithm is the AffinityAwareScheduler. This 
model, based on the knowledge of how the affinity of specific jobs will 
influence the throughput of the environment, allows the allocation 
decision that provides the best throughput. This causes the allocation of 
i first instances exclusively in the hosts while there are idle hosts, since 
the parallelism negatively influences all the jobs combinations that can 
be performed (all affinities sampled are below 1). As the simulations 
indicate, this represents a significant benefit to performance. To find the 
best allocation, the algorithm visits all h hosts available, storing the 
information of those that have the necessary resources for allocation. 
After that, the algorithm iterates the free h′ hosts encountered, assigning 
instances to them. If there are no more instances, a third analysis is done 
searching for the highest affinity with the i instances allocated. This 
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algorithm has a temporal complexity (h+h′*i), where for three levels of 
parallelism, we have 0 ≤ h′≤ 3h, and we have as the upper limit O(h*i). 
Algorithm 5.1 presents a simplified version of the algorithm 
implemented to allocate tasks based on affinity. 

Algorithm 5.1. Allocate (Task task). 

 

5.6. Simulation of Scheduling Solution 

The developed simulation enables the execution of thousands of jobs in 
different computational infrastructures in a much smaller time interval 
than the real execution, without the need of using the actual equipment. 
Some of the used benchmarks may take many hours to conclude, so it 
was not possible to conduct these experiments. Another advantage of 
using simulation is the possibility of creating groups of interest with a 
cardinality larger than the permitted by experiments (due to time 
constraints), i.e., performing the simulation with a larger number of 
interest group profiles than the benchmark executed experiments. 

In the simulation, a job is represented as an object composed of virtual 
machine instances and the resources needed for their execution (tasks). 
As previously mentioned, in the context of this work, a running cluster 
is a “job”. In the case of the AffinityAwareScheduler, each job also has 
a value representing its aging. The task is the basic unit for the 
scheduling. The virtual machine instances of a job included in this 
simulation are homogeneous, i.e., they have an identical configuration of 
cores and main memory usage. 
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For the execution of jobs, we use processing cycles as a runtime unit. A 
job has a number of cycles required for its conclusion. If this job is run 
separately, each task contributes with one cycle to the job processing. As 
jobs are processed in parallel, the scheduling affinity array is queried to 
apply the jobs’ affinity. The simulations take the cycle to be proportional 
to minutes. This distinction is necessary in order to adjust the amount of 
jobs that are submitted in each cycle. For the envisioned environment, in 
seeking for a more realistic scenario, it is not usual to get hundreds of 
job submissions every second or the need for processing time to be of 
the order of milliseconds. 

The simulation generates synthetic jobs, setting at random the type of job 
and the consumed resources, as well as the time required to execute the 
job in isolation, i.e., using dedicated resources. Once the jobs are defined 
and assigned, the arrival orders are generated to simulate the submission 
of jobs at different times. These arrival orders are set according to the 
processing cycle, but each one of the evaluated scheduler has identical 
orders of job submission. 

For each execution, a simulated infrastructure composed of 1000 
homogeneous processing nodes is available. Each node has  
12 cores and 36 GB of main memory. Each host can perform  
2 co-allocated tasks. The jobs executed in the simulation are chosen at 
random from the types available in the affinity table, with random 
requirements for the necessary number of instances (from 10 to 1000), 
the number cores (from 1 to 12) and the main memory (from 100 MB  
to 12 GB). 

Thus, the simulations occurred with a maximum of two parallel 
applications, with empirical affinity array computed by the first set of 
affinity experiments. 

5.6.1. Simulation with Concurrent Jobs Based on Affinity  
of Experiments 

This simulation aims to analyze how the schedulers’ models behave with 
the empirical affinity values obtained by the experiments. However, for 
the affinities of parallel execution of jobs with the b_eff benchmark, 
there are two possible values. The calculation of the affinity of these jobs 
is A = 0.6 for HPL, A = 0.49 for PARPAC, A = 0.27 for two b_eff jobs, 
A = 0.69 for PRIOmark common and A = 0.76 for PRIOmark single. 
However, during the experiments, due to the excessive increase in 



Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds 

151 

communication time, when b_eff executes concurrently, it may not run 
accordingly (application report errors), thus suggesting the adoption of 
affinity A = 0. For affinity-based schedulers, the simulation adopts the 
affinity value A = 0, preventing these jobs from running in parallel. For 
other schedulers, the b_eff job was removed from the interest groups. 

By adopting these affinity values one more benefit of the scheduling 
policy based on affinities is made clear. Besides suffering severe 
performance degradation, some jobs in those models not aware of 
affinities can run with errors because of the competition that takes place 
in the host. These problems are eliminated by models based on affinities. 
The only way to avoid concurrent execution errors in these jobs in the 
traditional models would be to consciously completely eliminate job 
execution, or at least make sure that no possible concurrent execution of 
jobs that can fail. By adopting the affinity 0, the affinity-based models 
perform this operation automatically. 

The simulation consists of 100 executions of a workload comprised of 
1000 jobs, with a maximum of two concurrent jobs in each host. Jobs are 
created at random and belong to one of the four (five if including the two 
PRIOmark types) evaluated applications in the first set of experiments, 
as well as the UNKNOWN type of jobs, with affinity A = 0.5 for generic 
jobs. For the execution with models not based on affinities, when a job 
of type b_eff is created, its type is changed also at random into one of the 
other groups that these schedulers can run without errors. All other 
parameters, such as the number of instances and the processing time, are 
maintained. This change ensures an advantage on the performance of 
designs not based on affinity, since these schedulers do not need to 
allocate single equipment for executing jobs of type b_eff. 

The model based on affinities was evaluated with two different values 
aging. One of the experiments was made using a low aging of 15 minutes 
(cycles). This value was chosen to represent a scheduling algorithm 
allowing a job waiting for approximately 15 minutes on the queue, to be 
executed. This value also made it possible to study the impact on 
performance of a scheduling with a low waiting timeout. After the 
timeout expires, the job is allocated even if the affinity is lower than 0.5. 

On the other hand, the second experiment with the affinity based model, 
an aging value of 3000 minutes was applied. Preliminary experiments 
showed that this value, with the employed settings, produced very small 
preemption, with almost all jobs allocated based on the instantaneous 
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optimal affinity, and without the need to allocate due to the waiting time 
limits. This value is used as an example in comparison to a policy that 
allows for practically indefinite waiting. 

Fig. 5.1 shows the average processing time for each scheduler. The value 
shown is the average of cycles that each model takes to process  
1000 jobs in 100 experiments. Despite of the disadvantage attributed to 
the models based on affinities in this experiment, working with jobs that 
do not support parallelism, both models evaluated were more effective 
in processing jobs. The AffinityAwareScheduler model with aging of 
3000 cycles had significant gains (5560.5 cycles) if compared to other 
models. The AffinityAwareScheduler model with 15 aging cycles 
(5913.95 cycles) is slightly faster than the RoundRobinScheduler model 
(5933.83 cycles) and FirstAvailableScheduler (6006.40). Meanwhile, 
the FifoScheduler model presents the worst completion time  
(6831.60 cycles). 

 

Fig. 5.1. Averages of processing time for 100 executions with 1000 jobs 
workload with at most 2 parallel job instances per host. 

5.6.2. AffinityAwareFifoScheduler Model 

The proposed AffinityAwareScheduler focuses mainly on the system 
throughput, but there is the need for an algorithm capable of following 
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the ordering of job arrival. Therefore, this work presents the union of the 
characteristics of the FifoScheduler model with the affinity-based model. 
Thus, a final algorithm is proposed, the AffinityAwareFifoScheduler. 
This algorithm is an extension of the model based on affinities with 
blocking queue, i.e., if there are no resources to meet the requirements 
of the next job from the queue, then the scheduler waits until resources 
become available. Due to this scheduling policy, a part of maintaining 
the processing order paired with the submission, it also eliminates the 
tendency of the affinity based algorithm of allocating smaller jobs at the 
expense of more resource-consuming jobs. 

To analyze the performance of this new model, one more simulation was 
executed. This simulation consists of the implementation of the two 
models whose best features allowed the creation of the 
AffinityAwareFifoScheduler, plus this new model. The simulation 
parameters are set with three levels of parallelism and an affinity 
(randomly generated) in the range 0 < A ≤ 1. The random value is used 
because there are no experiments measuring affinities with three  
co-allocated applications. Thus, to be able to use more co-allocated 
applications per host and improve on the simulations, random affinity 
values are generated. An aging parameter of 15 cycles was adopted for 
the AffinityAwareFifoScheduler. Since only the job in front of the queue 
(waiting for resources to be allocated) suffers aging, a high value can 
cause long waiting periods to start the execution of the job. However, if 
starvation is not a problem, one can achieve a better performance by 
increasing this parameter. For comparison, the AffinityAwareScheduler 
was set to 3000 cycles of aging parameter, and it yielded the best in 
performance in all of the simulations. 

Fig. 5.2 shows an average of the results of 100 experiments. It is possible 
to notice an improvement in the performance of the FifoScheduler 
algorithm (approximately 1.6× faster), confirming that the affinity-aware 
scheduler can contribute to a better performance. From the 100,000 tests 
performed, the AffinityAwareScheduler 3000 algorithm activated aging 
in just 8 jobs, while the new algorithm had 4,479 of the 100,000 total 
running since they exceeded the maximum aging limit. 

The results presented so far indicates that by taking advantage of the 
affinity relation between co-allocated VMs, the overall performance of 
the environment can be greatly enhanced. Thus, following the positive 
results of the experiments, this work proposes a scheduler to fully use 
the affinity for improved environment usage. 
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Fig. 5.2. AffinityAwareFifoScheduler execution compared to the FifoScheduler 
and AffinityAwareShcheduler 3000 models. 

5.7. ProSched: The Affinity Aware Scheduler 

According to [19], an inappropriate allocation of competing applications 
can cause performance degradation. If the limits specified by Quality of 
Service contracts are extrapolated, a cloud proposal may be invalidated. 
For this reason, it becomes necessary the methods of scheduling cloud 
applications that allow applications that have different characteristics 
and, therefore, reduce the impact of competition between them. 

Because applications in a virtual machine can change their computing 
resource usage profile during execution, it is also necessary to analyze 
this change in case of degradation in others virtual environments. For 
example, only classifying the application as processing-intensive  
(CPU-Bound) does not allow to guarantee that this virtual machine will 
occupy 100 % CPU during the entire runtime as was in the previous 
simplified simulations. There is a possibility that at any point in time, the 
application will change its consumption profile and start using another 
resource strongly [20]. At this moment, it is introduced one of the 
motivations concerning the development of the proposed scheduler, 
where changes in the application’s profile can lead to overload and 
degradation in the execution of the other virtual machines allocated in 
the same host. This can occur not only at allocation time, but might also 
arise during the execution due to changes in the application 
characteristics. 

The use of the concept of affinity between applications for a scheduler 
aims to contribute to the allocation of the virtual environment based on 
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the characteristics of consumption and affinity between applications. 
Thus, it is necessary to monitor and analyze the various application 
profiles, established through the history of resource consumption. 
Through this study, a degree of affinity is defined to be used by the 
scheduler to optimize the process of allocation and migration of virtual 
environments in a cloud, in order to avoid the impact of the competition 
of the computational resources. Differently from the simulations, the 
application could, for example, during a time behave with a certain 
aspect, such as CPU intensive and in other moments behave as IO 
intensive. This needs to be addressed to better allocate real application 
that have different characteristics depending on the time. 

In this section, it is introduced two used scheduler techniques, the static 
and the dynamic technique. These two techniques refer to when 
decisions are made. In static scheduling, application profiles are 
previously known and, once allocated, virtual machines are kept on the 
same physical machine until the execution ends. However, in dynamic 
scheduling, one may not have initial knowledge about the characteristics 
of the application, so the profile of resource usage may change during 
execution. Applications reach the scheduler at different times. When the 
scheduler detects a behavior change in the application profile, it may 
decide to migrate the virtual machines in order to avoid the performance 
dropping of those sharing the same physical environment [6]. 

5.7.1. Scheduler Method 

The scheduler method is built in four independent services. Each service 
is responsible for one functionality in scheduler system (Fig. 5.3). In this 
context, the scheduler working unit is the task, as a virtual machine with 
an application or part of an application running on a bare metal. That is, 
if a job is divided in multiple virtual machines, each one of these VMs 
constitute a task and can be allocated or migrated individually. This 
granularity allows for a balance in allocation flexibility and  
VMs overhead. 

The ProSched Web service is a web interface used to submit 
applications, manage and monitor, in real time, the infrastructure. The 
infrastructure functionally is accessed only by administrators. 

The Deployer service sends applications to the infrastructure, it’s main 
focus is the virtual machine management. It works directly with the 
Scheduler, requesting the best host to allocate each task in the 
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infrastructure. After this communication, the Deployer starts the virtual 
instances on compute host or initiates the live migration of virtual 
machines with lower affinity degree. This service is also responsible to 
start up monitors for each virtual machine running in the scheduler 
infrastructure. It is worth emphasizing that the “0.6” affinity degree was 
obtained empirically through the application execution history and it is 
possible to adjust it. This value is to give an advantage before migrating 
VMs as a value bellow this any performance gain would be neglected by 
the migration overhead. 

 

Fig. 5.3. Scheduler Architecture based on Applications Profile. 

In addition, the Deployer service has two ways of managing the virtual 
machines used in this scheduling approach. The first is the direct 
integration with hypervisors through the LibVirt API, which can be used 
to manage KVM, Xen, VMware and other virtualization technologies 
[21] (for the experiments, KVM was used). And also, integration with 
cloud providers, using the PkgCloud library. PkgCloud is a robust 
standard library for NodeJS that abstracts the differences between 
various cloud providers, making service requests homogeneous 
regardless of the cloud infrastructure used. It serves the following cloud 
providers: Amazon, Azure, DigitalOcean, HP, Joyent, Openstack and 
Rackspace [22]. 

The Monitor service aims to collect and analyze data about the tasks 
during their execution. For each virtual environment, a monitor agent is 
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allocated to collect the resource usage information and, at the end, store 
its history on file for later use. This collection is done in a non-intrusive 
way, without the need to modify the application code (Fig. 5.4). 

 

Fig. 5.4. Service Monitor Architecture. 

The application’s execution profile is obtained by monitoring the task. 
Once the value collected exceeds the system degradation limit, which is 
identified by the Profile Analyzer, the monitor sends a message through 
the Notifier module, signaling to the scheduler about the resource 
consumption profile change of this application (Fig. 5.5(a)). Throughout 
the monitoring, the data of interest are collected and stored in files that 
will be used by the scheduler as base knowledge in future executions. 

 

Fig. 5.5. Monitor Data Analysis Method. 
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When we analyze the task’s CPU consumption history graph, we can 
immediately check two aspects: the variation of the use of the resources 
forms peaks and valleys, and the existence of trends over time. One 
solution found for this problem was the application of the Exponential 
Moving Average (EMA) in the resource consumption values obtained 
from the virtual environments. In this way, the curve movements are 
smoothed, allowing a real representation of the applications’ behavior. 
This avoids that sudden, not constant, changes being erroneously 
classified as the current task profile. 

The next service to be addressed is the Prosched. Its main contribution is 
to reduce the makespan (Time interval between the allocation of the first 
task to the end of the last execution [23]) of a queue of tasks. The use of 
the makespan metric for this evaluation is due to the finite queues 
executed in the experiments, however this is extended directly for 
unknown queue sizes in real scenarios. The makespan reduction is 
achieved by learning their dynamic profiles based on previous 
executions. In cases of profile change, the scheduler is able to allocate or 
migrate the task to another real machine in the infrastructure. For this, an 
analysis is made to find more tasks with greater affinity, ensuring the 
maintenance of the capacity to execute this environment. 

The behavior of the developed scheduler method combines techniques 
from the Round-Robin (RR) algorithm, with application affinity and 
dynamic execution profile. In this way, the first step in the allocation is 
to find if there are free resources. If it is found, the task is allocated to 
the available resource. If the resources have at least one task, the 
application affinity given in Table 5.4 is used. 

The applications used for these experiments were the HPL and IOzone 
benchmarks and the real applications Montage and Blast. As ascertained 
during the affinity measurements experiments, Blast has an execution 
profile analogous to the HPL benchmark and Montage varies between 
HPL and IOzone during its execution. This allows to verify how the 
scheduler behaves with real applications and compare it to the 
benchmarks scheduling. 

After a task enter into the execution queue, the scheduler starts the 
resource selection process for its allocation. Resources are organized in 
a way that simplifies a Round-Robin allocation by ordering them 
incrementally by the amount of tasks. In parallel, the scheduler looks for 
similar tasks in its affinity table and aggregates them in order to obtain 
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the average execution profile. For the knowledge of executing this 
profile, the scheduler only uses executions in which the task did not 
compete for resources with other applications. For this, the following 
cases are analyzed: 

1. The task has affinity and is not running: the resource is allocated 
and the scheduler tells the Deployer which host to start the task. The 
Deployer, in turn, starts the virtual machine and the monitor for  
that task; 

2. The task has affinity and is in execution: in this case, the scheduler 
only registers the execution profile of the task, without acting on  
the system; 

3. The task has no affinity, but is in execution: the scheduler evaluates 
the task and, based on the average execution profile and if the 
execution time is longer than the migration time, the scheduler 
requests the Deployer to perform the live-migration of the virtual 
machine to a resource that has the highest affinity. Otherwise 
migration is not done; 

4. The task has no affinity and is not running: The scheduler queues it 
for re-evaluation during the monitors notification process. 

During the task life cycle, the Monitor collects the information and 
notifies the scheduler if a profile change is detected. When the task 
finishes its execution, the scheduler stores the profile in the knowledge 
table and terminates its execution, informing that the resource has been 
released. Fig. 5.6 shows the steps in the operation of the  
scheduling algorithm. 

The ProSched scheduler also has a scheduling policy, which allows the 
allocation of tasks by assigning a priority to tasks in a queue. In the 
algorithm, a certain amount of priority coupons is distributed to be used 
when the user wants to have a higher priority in the execution queue of 
the tasks. These “coupons” are returned to the user after the deadline of 
24 hours in order to be reused. The amount of “coupons” to be distributed 
by the Prosched priority algorithm is easily changed, according to the 
need of each infrastructure. It is up to the administrator to assign the 
amount of “coupons” to each user. 

Once the task enters the execution queue, those with the highest degree 
of affinity and the highest amount of priority “coupons” are scaled first. 
With each round, applications that are queued have their priority value 
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increased. This solution implements the aging parading tested in the 
simulations. With this, users need to use their “coupons” more 
conscientiously, prioritizing their most important tasks. 

 

Fig. 5.6. Flowchart of the Prosched Scheduling Algorithm. 

However, as the focus of the work is to evaluate the degree of 
degradation of the applications and their allocation based on the degree 
of affinity between the profiles, this priority algorithm was not used, so 
all applications had the same priority value for the experiments  
and results. 

5.7.2. Scheduler Results 

Static Scheduling Results 

This subsection aims to present the results of the static scheduling 
algorithm, as well as to validate the allocation strategy based on the 
affinity between the applications and between the computational 
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resources used in the scheduler. In order to evaluate the performance of 
the static scheduling, the results are compared with the FCFS  
(First-Come First-Served) strategies, Random, in the form of a random 
allocation, and the Affinity. To validate the dynamic algorithm, a 
comparison between the Round-Robin algorithm and Affinity, with and 
without knowledge of the application profiles, and applying a hybrid 
knowledge on a queue, merging these two possibilities in the knowledge 
of the profiles. The static and dynamic approaches were adopted 
according to the types of online and offline scheduling. 

In order to validate the hypothesis that the affinity mode allocation can 
minimize the makespan and, consequently, optimize the use of 
computational resources, when compared to other approaches, only one 
real server was used in the static experiment to run an application queue. 
This configuration has the purpose of demonstrating that, in the worst 
case, it is possible to reduce the time of a run queue. The gain using only 
1 server indicates that it is possible to make gains with more than one. It 
is important to remember that the affinity study proposed herein aims to 
evaluate the impact between two virtual machines competing for 
computational resources in the same host. So in both experiments, two 
virtual machines are always allocated, which will be running one or  
more applications. 

The order of the execution queue (Fig. 5.7) is defined by the following 
applications: BLAST, HPL, IOzone, IOzone, HPL, HPL, Montage, HPL, 
Montage and IOzone. This queue was created with the objective of 
analyzing the results of the static scheduling involving applications with 
low degree of affinity, according to Table 5.3. 

 

Fig. 5.7. The execution timeline of the queue, in hours, of FCFS, Affinity  
and Random strategy. 



Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1 

162 

The Random strategy was the one that resulted in the worst performance, 
with an average makespan of 129.5 minutes. The increase in execution 
time is related to the fact that the first applications to be allocated 
concurrently were IOzone and Montage. The affinity matrix shows a low 
degree of affinity between these applications. With the analysis of the 
timeline of the Random algorithm (Fig. 5.7), it is possible to verify that 
during the execution of IOzone another IOzone is scaled to compete for 
the same resources, whereas the following application to IOzone is the 
HPL. If the knowledge of the behavior of these applications had been 
used, the HPL could have been executed before the IOzone, which would 
guarantee a better use of the computational resources, reaching also the 
reduction of the execution time. 

When analyzing the time of each approach (Fig. 5.7), the affinity-based 
strategy between applications obtained an average makespan of  
110.9 minutes. The reduction of time is related to the use of previous 
knowledge to avoid allocations of applications with low degree of 
affinity, which did not occur in the other algorithms. This was possible 
by preventing IO-intensive applications from being allocated 
concurrently. 

In summary, affinity-based allocation managed to reduce the makespan 
time between the FCFS and Random approaches by approximately  
13.3 and 18.6 minutes, respectively. The results show that the proposed 
strategy obtained a performance gain of up to 16.7 %, which proves the 
efficiency of the scheduler. 

Dynamic Scheduling Results 

The experiment whose result is illustrated by Fig. 5.8 proves that the 
dynamic scheduler has the ability to avoid the allocation of applications 
with low degree of affinity in situations in which the profiles are defined. 
The experiment also aims to show how the scheduler acts in conjunction 
with the Monitor, when there is no knowledge about the applications, 
and it is necessary to migrate them through live-migration. 

For the experiments, application profiles were elaborated to be executed 
created from the combination of some applications studied in this work. 
The purpose of these profiles is to validate the joint use of monitoring 
and scheduling, since the applications have different profiles and, 
therefore, it is more flexible to verify their behavior throughout the 
executions. This allows you to validate the proposed scheduling policy. 
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The experiments were organized in the following way: 6 sets of 
application profiles are sent to the scheduler, arriving at different times 
of time, one after the other, as in a real commercial scenario. The set of 
application profiles elaborated for the scheduling are: A {HPL, 
IOZONE}, B {BLAST, HPL}, C {HPL}, D {IOZONE}, E {HPL, 
IOZONE} e F {BLAST, HPL}. 

 

Fig. 5.8. Profile of task execution using the Round-Robin (RR) method. 

The queue to be executed dynamically by the scheduler follows the 
following order of arrival of the Profiles: A, B, D, E, C, F. The formation 
of this queue executes the worst case for the proposed scheduling 
algorithm, concurrent allocation of two conflicting applications, 
identified in the results of the competition effect analysis. 

In the first experiment, called RR Base, the Round-Robin allocation 
strategy is employed. This allocation strategy is commonly used by cloud 
computing systems, such as OpenStack [24]. The objective of this 
experiment is to compare this strategy with the one developed in this 
work, which optimizes the posterior allocations based on the 
consumption profile of the applications, as well as the migration of the 
environment when the degree of affinity is low. 

The dynamic scheduling police has the advantage of not needing to  
pre-compute affinity values, being more adaptable to a scenario where 
multiple different applications are submitted for the cloud such as in 
public clouds infrastructures. 

Through the analysis of Fig. 5.8, it is possible to notice that the greatest 
impact was perceived in Host 1. Initially, the applications were CPU 
intensive. However, after approximately 14 minutes, both applications 
changed their resource consumption profile and became intensive in IO. 
Because of this, the applications start to compete for the same resource 
that has proven to be the most critical against the competition. The IO 
resource sharing by the applications causes a degradation of 
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approximately 50 % in the execution of this profile, thus obtaining a 
makespan of 48 minutes. 

Fig. 5.9 illustrates the experiment in which real-time application profiles 
are discovered through monitoring and identification by the Monitor. 
The problem identified in the base experiment (Fig. 5.8) is solved by the 
proposed scheduler, through the migration of conflicting virtual 
environments. In Fig. 5.9, you can see that the impact moment has been 
identified when the load balancing process is started. This approach 
obtained a makespan of 41 minutes, 7 minutes less than for the RR Base. 

 

Fig. 5.9. Profile of tasks execution using the proposed method,  
without the knowledge of the applications (ASC). 

The experiment illustrated by Fig. 5.10 allocates the applications 
according to their profiles previously obtained. This allows the resources 
usage to be optimized, following the affinity matrix as knowledge  
(Table 5.4). 

 

Fig. 5.10. Profile of tasks execution using the proposed method  
with the application knowledge (ACC). 

In the Fig. 5.10, it is possible to verify that, starting from the initial 
allocation of the first 3 tasks, the use of the affinity matrix is started. It is 
at this point that the scheduler checks the profile and resource 
consumption history of each application. For example, when the 



Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds 

165 

Profile E is received by the scheduler, there is an intensive 
consumption application in IO. For this reason, Hosts 1 and 3 were 
considered ineligible to receive such a task, which caused the scheduler 
to opt for Host 2. Then, the next received application is the one classified 
with Profile C, which intensive CPU consumption. According to the 
affinity matrix, CPU has an affinity degree with IO of 0.91, which is why 
the scheduler allocates this application competing with the Profile D in 
Host 3. The last applications to be staggered (Profile F) are CPU and 
Memory intensive. With this, it is allocated competing with IO, due to 
the degree of affinity with applications of this type being 0.86. 

The proposed algorithm allowed to combine the study of the impact of 
competition between applications and the knowledge about their 
profiles. The adoption of the algorithm resulted in the reduction of the 
makespan in approximately 31 minutes, being on average 54 % faster 
than Experiment 1 (RR), and 38 % when compared to the algorithm with 
affinity without knowledge of the applications, presented in  
Experiment 2 (ASC). 

The results of these experiments allowed to demonstrate the gain of time 
when using application profiles. In addition, as applications are 
repeatedly executed, the more refined will be its profile, which allows 
you to increase the quality of the scheduling in future allocations. 

5.8. Related Work 

The work developed in [25] defines the term “performance interference” 
in the context of virtual machines as the degradation in performance 
experienced by co-allocated applications executing in apparently 
identical hardware. This degradation tends to face more challenges in 
virtual machines. One of the main advantages of virtual machines is 
environment isolation, however this isolation leads to greater 
interference issues by VMs. As an example, due to scheduling algorithms 
executing without knowledge of each other, applications could face 
harsher resource competition. For that reason, well established 
scheduling algorithms might not work in virtual environments. The work 
also used similar workload characteristics to devise a model able to 
predict performance interference with great accuracy, with an error 
margin of about 5 %. 
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The article [26] presents a scheduler named Paragon, which 
distinguishes itself by applying concepts of datacenter heterogeneity and 
applications interference to co-allocate tasks with the goal of delivering 
better QoS and higher datacenter throughput. By heterogeneity, the 
authors mean that the machines available in a given datacenter could 
have different performance results due to mismatch in hardware and by 
interference the authors mean how co-allocated tasks compete for 
resources. Paragon quickly analyzes the datacenter and workload to be 
run and, based on data from previously submitted workload, allocates the 
tasks. This analysis and categorization by similar workload allows 
Paragon to achieve comparatively high QoS and datacenter throughput. 

The article [27] presents an analysis of the impact of interference in  
co-allocated virtual machines. This work distinguishes itself by 
associating this impact with increased energy consumption. Recently, 
greater importance has been directed towards reducing energy 
consumption in cloud datacenters. 

CloudScope [28] is a project that applies a discrete-time Markov Chain 
model prediction of application interference to allocate or reallocate 
virtual machines in a cloud environment. CloudScope is developed with 
Xen hypervisor and uses Xen’s already present performance information 
as input, therefore causing low overhead. Besides, dealing with 
interference resulting in average 7.5 % better performance, CloudScope 
can set hypervisor optimization options to deliver an average of 28.8 % 
better network performance. 

The work presented in [25-28] analyzes tasks with workload groups, 
whereas the work presented here deals with tasks individually. On a 
public or private cloud with high heterogeneity of tasks, these sets of 
similar workload characteristics are ideal, because they reduce the cost 
of analyzing each task. However, we propose that in private clouds, 
where a small set of task profiles are submitted, computing the 
interference among tasks will produce better throughput. Due to this 
limited set of tasks, a more specific analysis of the affinity among tasks 
could yield better task performance and cloud datacenter throughput. 
When there is a known set of applications that are repeatedly executed 
on the system, i.e., an off-line system as defined in [29], this approach 
could lead to maximization of resource usage. The affinities of such 
application would already have been computed and the scheduler can 
restrain itself to just allocating it so that the resource is used to its 
maximum possible capabilities given the previous allocated states. Also, 
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as far as could be investigated, the works published in this area deal with 
instances as standalone objects. The work presented here focus on 
applications for distributed memory systems, so a job is composed of 
many identical instances (tasks) spread throughout a large number of 
physical hosts. Finally, in case of public clouds, where there is a large 
set of workload profiles, the initial categorization in a generic profile, the 
analyze of the application profile in real time with a monitor and the  
live-migration, as adopted by the proposed scheduler, can achieve better 
resource utilization. 

In [30] the authors seek to formulate efficient solutions for reducing 
energy consumption while minimizing performance interference among 
VMs. The interference probe is treated through the profiling of the VM 
to predict the level of interference of this in execution with another VM. 
This approach is interesting when considering cloud PaaS environments 
where VMs contain the same applications, changing only the data used. 
The solution proposed in this article focuses on the allocation of clusters 
for scientific applications, thus requiring a profiling per application, 
since different applications can be executed in the same VM. The 
proposed approach also has the advantages of scheduling virtual clusters 
and verifying the level of interference between more than  
two applications. 

The problem of minimizing interference on Virtual Machine Placement 
is addressed by Rahman and Graham in [31]. The authors refer to it as a 
problem of placing VMs on hosts according to their requirements as 
specified in Service Level Agreements (SLAs). They introduced 
Compatibility-based Static VM Placement (CSVP), which exploits 
obtained information about VM’s expected load variation to co-locate 
compatible Virtual Machines together in order to improve their initial 
performance and implemented it on CloudSim. The simulations with 
workloads derived from Google traces allowed the authors to conclude 
that the use of CSVP helps to decrease and even avoid VM interference 
in most of cases. Although CSVP’s simulations results are consistent, it 
is uncertain how it would deal with the unavailability of hosts that match 
SLA requirements. Our proposal introduces an aging factor, which 
increases VM’s placement priority and avoids it to starve. Also, their 
work uses an estimation of VM’s load variation while ours defines an 
affinity value based on previous evaluations. Furthermore, their work 
assesses interference between individual VMs whilst ours assesses the 
VMs in the context of a cluster. 
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[32], in turn, introduces CloudSim, whose goal is to provide a simulation 
system that enables modeling, simulation and experimentation of cloud 
infrastructures and application services. Among the conclusions 
obtained, in order to optimize the use of the computational cloud and to 
verify the effects of competition on the infrastructure, the need to 
monitor the applications was demonstrated. However, it does not 
presents a study that defines what types of applications could coexist in 
these virtual environments, without the degradation due to competition 
by computational resources. 

In the work of [33], it is proposed to create an SLA (Service Level 
Agreement) decision-making system for optimal aggregation of 
resources. In the proposal, there is a control of resource use that 
punctuates expenditures and compares with proposed service levels, 
penalizing an excessive burden. The authors’ proposal is based on 
consumption calculation, but it refers to the platform as a service, 
without monitoring the load on the entire infrastructure, nor do they 
evaluate different types of applications that can compete by the  
same resource. 

[34] presents an analysis of the impact of scientific applications running 
on a virtualized cluster, based on the impact caused by intensive network 
and IO use. The results and conclusions of the authors point out the need 
to define the profile of the behavior of the applications to better stage 
them in virtualized HPC environments in order to avoid the overhead of 
the computational resources. 

The work developed by [35] presents a method of scheduling virtual 
machines in computational clouds focused on HPC. The scheduler 
developed by the author takes into consideration the power consumption 
and type of workload that the virtual machines will execute to decide 
when and on which server they will be allocated. The evaluation of the 
algorithm was made using the CloudSim. The results indicate the need to 
analyze specific details of the infrastructures and applications to 
contribute to the resources’ optimization and, consequently, increase the 
levels of service offer and reduce the problems caused by the concurrent 
use of resources. 

The works [32-35] point to an existing gap regarding the need to deepen 
the studies about the competition’s effects when a real environment is 
shared by several virtualized environments. Even so, they do not cite 
studies using the concept of Affinity between applications. 
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5.9. Conclusion 

It is observed that by adopting an affinity conscious allocation model, 
one can obtain better use of existing infrastructure. Furthermore, the 
scheduler developed was able of using the affinity knowledge to improve 
resource utilization. And, by the use of dynamic scheduling strategy, 
even negate the need to pre-compute affinity tables. 

Execution of the experiments in Section 5.3 allowed not only to check 
for different affinities for different applications, but also empirical 
development of an affinity array for the parallel execution of two 
concurrent jobs. 

This chapter also presented the simulation of the proposed models in 
Section 5.6. These simulations allowed us to verify the performance of 
different allocation solutions for virtual machines. Finally, the 
simulations enabled the execution of a large set of experiments. In these 
experiments, the allocation models of virtual machines based on affinity 
demonstrated a good job throughput when compared to affinity  
unaware models. 

The results obtained in the static and dynamic allocation experiments 
prove the efficiency of the developed scheduler. It was possible to 
aggregate the study of affinity of the applications to the monitoring 
system, to identify a task that changes its consumption of computational 
resources and negatively impacts on the infrastructure. In addition, it 
allowed the identification of the profiles in real time, besides the analysis 
of the history of consumption, optimizing the allocations and 
consequently, the use of the computational resources. Another point 
worth mentioning is the system that identifies and migrates virtual 
environments when an application with a low degree of affinity is 
identified. This factor, together with the efficient allocation, allowed the 
proposed scheduler to obtain better use of the resources, besides reducing 
the time that an application waits in the queue until it is executed. 

The allocation model operates to avoid application and system overhead, 
migrating the virtual machines only when needed. Migration is 
considered necessary only in situations where the migration time is 
shorter than the time it remains in a profile that has a low degree of 
affinity. This contributes to the fact that the execution of the applications 
will suffer less negative influence due to competition, at the same time 
that the resource utilization rate is increased. Such benefits are relevant 
to both users and cloud service providers. 
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Thus, the main contribution of this work is the consolidation of the 
available computing infrastructure, maximizing the throughput of jobs in 
the environment. Even the reduced scope of the presented experiments 
highlights the opportunity of creating affinity arrays tailored for the 
workload of a cloud environment, taking advantage of the available 
flexibility with an intelligent use of computing resources and, in cases 
where the affinity is unknown the scheduler can adapt in real time to 
improve resource utilization. 

5.9.1. Future Work 

The experiments conducted to assert application affinities were restricted 
to a reduced number of applications, specifically benchmark applications 
representative of a specific characteristic, such as CPU, Memory or IO 
intensive. Thus, it is necessary to perform new experiments in order to 
encompass a greater number of different application profiles, particularly 
real applications. Possibly, generic application profiles, as exemplified 
in this work, allowing the allocation of unknown applications into a 
profile that best captures the performance requirements of each job, 
similar to the dwarf categorizations seen in [36]. Therefore, generic 
interest groups eliminate the need to perform experiments for each type 
of application running in a given environment, even though the generic 
categorization may not be able to get as good a result as is the case with 
specific affinities for each application. 

An empirical method for the construction of the affinity matrix was 
employed. Thus, the work presented needs the predetermination of the 
affinities for workloads that run on an environment, or that a group of 
jobs that have similar processing characteristics and affinities be 
determined within an error margin as previously specified. Another way 
to obtain an affinity array without the need to conduct experiments is the 
dynamic creation of job affinities through machine learning. Machine 
learning provides some interesting benefits that can be used. For 
example, the creation, at runtime, of affinities in an environment where 
there is repetition or a pattern of executed jobs. In this scenario, the 
automatic creation of specific affinities to the managed environment 
would be possible. Also, to enhance this scheduler, a suggestion for 
future work involves the migration of the environment before changes in 
the profile can negatively impact the infrastructure and other virtual 
environments. To do this, the scheduler would have to analyze the 
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application profile and using machine learning methods, to try anticipate 
changes and migrate the environment. 

Recently, container based virtualization has gained importance in cloud 
environments. Some of the aspects that helped containers gain this 
attention are the fast instance deployment when compared to virtual 
machines, and the lower overhead, resulting in better performance. One 
negative aspect of containers that is often mentioned, when compared to 
virtual machines, is the lower isolation of environments. However, 
isolation may have a negative impact on the scheduling policy of the 
host. So, as a future study, we propose the analysis of container 
application affinity and comparison to traditional virtual machines. This 
may help to ascertain how much isolation is affecting performance, and 
test if the affinity aware scheduling model can contribute to better 
container based cloud use. 

As previously mentioned, the present work adopts a single hypervisor 
(KVM) for all experiments and validations, as it is common for cloud 
providers to adhere to a single virtual machine monitor solution. 
However, the possibility of allocating an application paired with a 
hypervisor better suited for its workload could indeed benefit the 
performance of the application. Also, the possibility of live-migration 
when an application changes its usage profile could also be applied to 
reallocate it, not only based on the affinity of co-allocated VMs, but also 
based on the VMM best suited for the new profile. Further studies in this 
topic could prove useful for the adoption of cloud based HPC. 
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Chapter 6 

DDoS Attack Protection in the Era  
of Cloud Computing and Software-
Defined Networking 

Bing Wang, Yao Zheng, Wenjing Lou and Y. Thomas Hou1 

6.1. Introduction 

As cloud computing provides on-demand, elastic, and accessible 
computing services, more and more enterprises begin to embrace this 
paradigm shift by moving their database and applications into the cloud. 
At the same time, another epochal concept of the Internet architecture 
comes to forefront, i.e., Software-Defined Networking (SDN). While 
cloud computing facilitates the management of computation and storage 
resources, SDN is proposed to address another laborious issue hindering 
the evolvement of today’s Internet, i.e., the complicated network 
management. Besides the fact that SDN has been proposed as a candidate 
of the next generation Internet architecture, companies like Google have 
already adopted SDN in their internal data centers. Thus, the arrival of 
the era when cloud computing and SDN go hand-in-hand in providing 
enterprise IT services is looming on the horizon. 

Besides all the widely perceived benefits, the marriage between cloud 
computing and SDN may also introduce potential risks, especially on 
network security. Among all the network security problems, we first take 
a look at Denial-of-Service (DoS) attack. A DoS attack and its distributed 
version, Distributed Denial-of-Service (DDoS) attack, attempt to make a 
service unavailable to its intended users by draining the system or 
network resource. Although network security experts have been devoting 
great efforts for decades to address this issue, DDoS attacks continue to 
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grow in frequency and have more impact recently. Existing DDoS attack 
defense solutions (to list a few [1-4]) assume a fully controlled network 
by the network administrators of enterprises. Therefore, the network 
administrators could place certain hardware pieces in the network to 
detect or mitigate DDoS attacks. However, in the new network paradigm 
of cloud computing and SDN, these assumptions no longer stand. Other 
researchers [5, 6] focus on exploiting the benefits of cloud or SDN to 
defend DDoS attacks. But their target victims still reside in the traditional 
network environment, which makes their solutions unsuitable for the 
new network paradigm. To the best of our knowledge, little effort in 
research community has been made to look into the potential problems 
or opportunities to defend DDoS attacks in the new enterprise network 
environment that adopts both cloud computing and SDN. 

In this chapter, we first analyze the impact of the combination of cloud 
computing and SDN on DDoS attack defense. We discuss the potential 
issues under this new paradigm as well as opportunities of defending 
DDoS attacks. Based on our analysis, we claim that if designed properly, 
SDN can actually be exploited to address the security challenges brought 
by cloud computing and the DDoS attack defense can be made more 
effective and efficient in the era of cloud computing and SDN. We then 
propose a new DDoS attack mitigation architecture using  
software-defined networking (abbreviated as DaMask) to demonstrate 
and substantiate our findings. DaMask contains two modules: an 
anomaly-based attack detection module DaMask-D, and an attack 
mitigation module DaMask-M. We build our DaMask-D module based 
on a graphical probabilistic inference model. Compared with existing 
graphical model based detection schemes [7-9] which only have model 
training and testing phases, our DaMask-D features an additional model 
updating phase to address the dataset shift problem in the real world. The 
dataset shift refers to the fact that the network traffic conditions when we 
build the model differ from the actual traffic conditions when we use the 
model. This fact varies from the common assumption used in the existing 
works where the attack patterns learned from the training data are 
assumed to be no different from the attack patterns in the future. Our 
contributions can be summarized as follows: 

1. To the best of our knowledge, we are among the first to bring the 
attention of the impact on DDoS attack defense of the new network 
paradigm, which is a combination of cloud computing and SDN. Based 
on our analysis, we find that the marriage of SDN and cloud computing 
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provides an unique opportunity to enhance the DDoS attack defense in 
an enterprise network environment. 

2. To substantiate our claim, we propose DaMask, a highly scalable and 
flexible DDoS attack mitigation architecture that exploits SDN 
technique to address the new security challenges brought by cloud 
computing, including the extended defense perimeter and the dynamic 
network topological changes. 

3. Our DaMask-D module in the DaMask architecture features an 
additional model update phase, compared to existing graphical-model 
based network attack detection schemes, which successfully handles the 
dataset shift problem in the real world and achieves a higher  
detection rate. 

4. At last, we implement our proposed structure and performed a 
simulation based evaluation using the Amazon EC2 cloud service. The 
results show that our scheme works well under the new network 
paradigm and incurs limited computation and communication overhead, 
which is a crucial requirement of DDoS protection in cloud computing 
and SDN. 

Compared with our preliminary NPSec work [10] which presented the 
DaMask framework, the journal version completes the DDoS attack 
defense solution by including an attack detection system in Section 6.4. 
The attack detection system which is based on the graphical model 
detection is not only tailored to accommodate the unique requirement of 
DDoS attack defending in cloud computing, but also manages to address 
the data shift problem which decreases the detection performance in most 
machine learning based solutions. We also add performance evaluation 
results of the detection module in Section 6.5.3 including the 
performance of detecting attacks and the ability of adapting the data shift 
issue. We organize the remainder of the chapter as follows. We analyze 
the impact of cloud computing and SDN on DDoS attack defense in 
Section 6.2. Based on our analysis, we formulate the problem and present 
our DaMask architecture design in Section 6.3. The technical details of 
the DaMask-D module is discussed in Section 6.4. Section 6.5 presents 
the simulation setting and the results. Related work are reviewed and 
compared with our work in Section 6.6. We draw concluding remarks in 
Section 6.7. 
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6.2. Analysis 

In this section, we briefly review cloud computing and SDN. Then we 
analyze the impact of the combined technologies on the network 
protection against DDoS attacks. 

6.2.1. Cloud Computing 

Cloud computing is a computing model which manages a pool of 
configurable computing resources. Cloud computing can be categorized 
as public cloud, private cloud and hybrid cloud in terms of deployment. 
While public cloud and private cloud are used by public and a single 
organization, respectively, hybrid cloud is a composition of public and 
private cloud infrastructures. As a result, hybrid cloud share the 
properties of both public cloud and private cloud. Hybrid cloud allows 
companies keeping their critical applications and data in private while 
outsourcing others to public. Thus, we focus on analyzing the impact of 
hybrid cloud on DDoS attack defense. 

6.2.2. Impact of Cloud Computing on DDoS Attack Defense 

Nowadays, attackers can launch various DDoS attacks including 
resource-focused ones (e.g. network bandwidth, memory, and CPU) and 
application-focused ones (e.g. web applications, database service) from 
almost everywhere. To be realistic, we have to assume attackers can 
reside either in a private network, in a public network, or in both. To this 
end, we find the following properties of cloud computing affect DDoS 
attack defense. 

1. Instead of users, cloud providers control network and computation 
resources, i.e., physical servers. This property differs from the system 
model in the traditional DDoS attack defense, where the protected 
application servers are within the defender controlled network. 

2. Resource allocation and virtual machine migration are new sources of 
network topological changes from the defender’s view. Moreover, the 
resource allocation and virtual machine migrations processes are  
fast-paced. The DDoS attack defense must be able to adapt to a dynamic 
network with frequent topological changes and still maintain high 
detection rate and prompt reaction capability. 
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3. All cloud users share the same network infrastructure of the cloud. 
This raises a reliable network separation requirement, which has not been 
considered in traditional DDoS attack defense. The enterprise must 
ensure its DDoS attack detection/defense operations neither affect nor be 
affected by other cloud users. 

We illustrate these impacts using the example in Fig. 6.1. To ease the 
presentation, we denote an attacker in the private cloud of the enterprise 
network as a local attacker, an attacker in the off-site public cloud of the 
enterprise network as a cloud attacker, and other attackers as outside 
attackers. Similarly, we refer a server in the private cloud as a local 
server and a company’s server in the public cloud as a cloud server. We 
consider two attacking scenarios. In the first attacking scenario, the 
victim server is within the private cloud. In the second one, the victim 
server resides in the public cloud. 

 

Fig. 6.1. The structure of a hybrid cloud, consisting of one private cloud  
and two public clouds. Five types of attack traffic are shown in the figure. 

In the first attack scenario, there are two types of attack traffic, i.e.,  
(1) and (2) in Fig. 6.1. The enterprise’s local DDoS attack defense system 
can detect the attack traffic (2), while the detection of the attack traffic 
(1) depends on whether the internal traffic is redirected to the DDoS 
attack defense system. Nevertheless, this scenario is similar to the 
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traditional DDoS attack scenario. In what follows, we focus on two new 
challenges introduced in the second attacking scenario. 

The first challenge is raised by the public accessibility of the cloud 
resources. We refer to this challenge as extended defense perimeter. 
There are three types of attack traffic, (3), (4) and (5). The enterprise’s 
local defense can only examine and filter out the attack traffic (3) before 
the traffic leaves the local network. The defense offered by the cloud 
provider can check the attack traffic (4). However, more advanced 
attacks, such as the application-layer attacks which target specific 
applications, can bypass the generic defense provided by the cloud. The 
most stealthy attack is type (5) because it is initialized from the same 
physical network or even the same physical machine on which the 
application is running. Most of these traffic is handled at local switches 
or hypervisors without going through the detection hardware. 

The second challenge is raised by the rapid resource re-allocation. We 
refer to this challenge as dynamic network topology. This challenge 
makes the attack traffic (4) and (5) more difficult to handle because the 
enterprise’s defense mechanism has to adjust to the network change 
caused by the physical location change of the virtual machine. The 
adaption must take effect in a short time period, for example, in 
milliseconds thanks to advances in live migration technology [11]. 
Moreover, because most of the topology changes are done by cloud 
provider without notifying the users, the DDoS attack defense 
mechanism needs to communicate with the cloud service provider to 
properly adapt the changes. 

6.2.3. Software-Defined Networking 

Unlike the well formatted data plane abstraction in the OSI model, the 
control plane of the Internet is composed of various complicated 
protocols for various network functions. Managing these protocols in a 
distributed manner becomes inefficient and error-prone. SDN is a 
network architecture that decouples the control plane and the data plane 
of network switches and moves the control plane to a centralized 
application called network controller. The network controller is in 
charge of the entire network through a vendor-independent interface 
such as OpenFlow [12], which defines the low-level packet forwarding 
behaviors in the data plane. Developers then can program the network 
from a higher level without concerning the lower level detail of packet 
processing and forwarding in physical devices. 



Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking 

181 

6.2.4. Impact of SDN on DDoS Attack Defense 

The most important two concepts of SDN are control plane abstraction 
and network function virtualization. They introduce following 
properties. 

 Centralized network control: The centralized network operating 
system (NOS) connects to all the switches in the network directly. 
Thus, NOS can provide a global network topology along with the 
real-time network status. 

 Simplified packet forward: The data plane in SDN simply forwards 
packets based on the forwarding policies generated by control 
programs. 

 Software based network function implementation: Network functions 
originally implemented within a switch or a middle-box are 
implemented as control programs in SDN. These control programs 
reside above the NOS and communicate with switches remotely. 

 Virtualized network: Similar to a hypervisor in hardware 
virtualization, the network virtualization hides the network topology 
from control programs so that network function developers can focus 
on the functionality implementation. 

Implementing SDN affects the DDoS attack defense greatly in both 
directions. On the bright side, SDN makes advanced detection logic and 
rich subsequent processes easier to implement. On the downside, the 
devices or middle-boxes originally distributed within the network now 
need to be located above NOS. Compared with hardware-based packet 
processing, software processes packets is much slower. The network 
delay and traffic overhead caused by the communications between the 
control program, i.e., the DDoS attack defense schemes, and the 
switches, may become the new attack surface. 

6.2.5. DDoS Attack Defense in Cloud Computing and SDN 

Based on our analysis, cloud computing introduces new DDoS 
challenges, i.e., extended defense perimeter and dynamic network 
topology due to its new operation model. To effectively address these 
challenges, the cloud provider must be able to 1) Easily delegate the 
control of its network to cloud users; 2) Fast re-configure the control 
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according to the network topology changes caused by dynamic 
allocations and migrations. On one side, we could benefit from the 
centralized network controller and the network virtualization of SDN. 
On the other side, SDN influences DDoS attack defense in negative ways 
as we discussed early. The negative impact of SDN mainly comes from 
the efficiency of processing packets using software, which may generate 
new attack surface and lead to single-point failure. When designing a 
DDoS attack defense solution in SDN, one must take the computation 
and communication overhead into the consideration so that no new 
security vulnerability is introduced. To sum up, we believe SDN 
technology will benefit the DDoS attack defense in cloud computing as 
along as the design could carefully handle the communication and 
computation overhead. 

6.3. DaMask Design 

6.3.1. Design Overview 

Based on the analysis in Section 6.2, we need to incorporate the DDoS 
attack defense into cloud computing and SDN. To successfully address 
the DDoS attack defense challenges in the new network environment, we 
must achieve the following objectives. First of all, the scheme must be 
effective. The design should be able to protect the services in both private 
and public clouds. It also should be able to adapt to the network topology 
changes and mitigate DDoS attacks efficiently. Secondly, the scheme 
should incur small overhead. The communication and computation 
overhead introduced by the architecture should also be limited to a small 
amount to be practical. Lastly, the deployment cost should be 
inexpensive. The solution should require as little deployment cost, such 
as additional hardware or changing existing protocols for both 
enterprises and cloud service providers, as possible. 

To address the first challenge, our idea is to separate the enterprise’s 
network traffic from the main network by virtualizing the network. We 
call such a virtual network a slice. Then we let the cloud provider 
delegate the slice to the owner of this slice. Similar with the hardware or 
platform virtualization, a slice contains the network flows related to the 
enterprise only and is isolated from other slices. The strong isolation 
between different slices ensures that a slice is visible to its belonging 
company only. Therefore, operations performed on the slice are 
transparent to other cloud users. 
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For the second issue, we should select an efficient attack detection 
algorithm which involves as little information as possible to reduce the 
communication overhead. Meanwhile, the detection process itself must 
be fast enough to incorporate with the packet forwarding speed. Existing 
DDoS attack detection algorithms could serve the purpose as long as it 
does not depend on certain hardware. It is also worth mentioning that 
signature-based detection or anomaly-based detection or even a 
combined detection scheme can be used here. 

To cope with the last issue, we need a rapid re-configuration scheme for 
each slice in the cloud. Given the nature of a virtualized slice, which is 
defined by its profile, our idea is to re-configure each slice profile when 
the virtual machine migration is taking placing. Because the cloud 
provider virtualizes the network, he can track all the enterprises’ 
controllers, and re-configure the profile of a slice when a migration is 
about to happen. By applying the new slice profile, the cloud provider 
ensures the right enterprise getting the control of the proper slice. 

6.3.2. Workflow of DaMask 

To substantiate our previous claim, we propose a DDoS attack mitigation 
architecture, named DaMask. The DaMask architecture has three layers, 
network switches, network controller, and network applications. The 
main functions of the DaMask are DDoS detection and reaction. There 
are two separate modules in the DaMask, DaMask-D, a network attack 
detection system, and DaMask-M, an attack reaction module. We present 
the workflow of DaMask in Fig. 6.2. 

 

Fig. 6.2. Workflow of DaMask. 
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6.3.2.1. DaMask-D Module 

The DaMask-D module is an anomaly-based attack detection system. 
We argue that although signature-based attack detection could also work, 
they are not efficient. The reason is that, in SDN, the responsibility of 
generating a packet signature moves from a switch or a middle-box to a 
remote control program, which not only processes slower than hardware, 
but also requires all the packets to be redirect to it. Therefore, we focus 
on anomaly-based detection. Now we assume we already have a 
detection algorithm implemented (this can be done in an offline process 
as shown in Fig. 6.2). 

In online phase, when a new packet arrives at the switch, the cloud 
provider first decides which slice the packet belongs to. Then the cloud 
provider notifies the corresponding NOS of the slice. After receiving the 
notification, the slice owner’s NOS checks whether the packet belongs 
to an existing flow1. If so, it updates the flow statistic, otherwise it build 
a new flow record. Then we query the detection model with the updated 
or the new flow static. If the query result indicates an attack, DaMask-D 
issues an alert and forwards the alert along with the packet info to the 
DaMask-M module. If the query result is normal, the packet is forwarded 
to its intended destination. Occasionally, the detection model cannot 
determine the attack type of a packet if the packet belongs to a new type 
of attack. In that case, the packet needs to be further analyzed. The 
analysis result is then used to update the detection model through a model 
updating process. 

6.3.2.2. DaMask-M Module 

The DaMask-M module is an attack reaction system. In the existing work 
of DDoS protection in today’s Internet, the reaction options are simple 
and limited, because advanced post-processing logic requires switches 
working together in a distributed manner. Implementing and managing 
such functions are time-consuming and error-prone. In SDN, we can 
implement those sophisticated logic such as quarantine of different types 
of packets to different location thanks to the control plane abstraction. 
The DaMask-M contains two functions: countermeasure selection and 
log generation. When DaMask-M receives an alert, it tries to match the 
alert to a countermeasure. The default action is to drop the packet if there 

                                                      
1 The flow definition varies for each slice according to different requirements  
of enterprise. 
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is no pre-set policy for the alert. We implement DaMask-M as a set of 
common APIs so that defenders can customize their own defense 
countermeasure for different DDoS attacks. The basic unit a defender 
can play with is flow. We define three basic operations, forward, drop 
and modify to form advanced defense logic. Compared with DDoS attack 
mitigation in traditional network, DaMask-M provides a powerful way 
to implement the countermeasure. After the countermeasure is selected, 
DaMask-M pushes the policy to the switch through network controller. 
After that, the attack packet, along with its auxiliary information (e.g. the 
time stamp and response actions), is recorded in the log database. 

6.4. Graphical Model Based Detection System 

In Section 6.3, we state that an anomaly-based network attack detection 
system will fit our DaMask framework well. In this section, we propose 
our attack detection system which is built on probabilistic inference 
graphical model. Although other existing attack detection systems are 
compilable with DaMask, our detection model advances with two 
features: 1) Automatic feature selection; 2) Efficient model update. By 
updating our model efficiently, we are able to address the dataset shift 
problem which is not considered in the existing schemes. 

6.4.1. Graphical Inference Model 

The core of the attack detection system is a graph model. It stores known 
traffic patterns as a relational graph between patterns and their labels 
(malicious or normal). When new network traffic arrives, the system uses 
this graph to determine whether it is malicious. 

6.4.1.1. Automatic Feature Selection 

To build the model for network traces, a set of features must be extracted 
from the network traces. In traditional anomaly-based detection systems, 
features are picked heuristically based on the designers’ experience. 
Although experts can provide valuable insight, they may also introduce 
inevitable bias due to their limited knowledge. A more objective way is 
to spawn a large candidate feature set and let the data decide which 
features are relevant. We exercise feature selection [13] on a large feature 
set. Considering the fact that network traffic is usually low dimension 
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data (the number of cases is far greater than the number of features), the 
Chow-Liu algorithm [14] is a good choice because it surpasses other 
algorithms when learning from low dimension data [15]. 

Denote 1 2= ( , , , )nX X X  as the feature set, the Chow-Liu algorithm 

works as follows: 1) Initialize an edgeless graph ( = , = )G V E   with 

each vertex corresponding to a feature;  
2) For each pair of features ,i jX X  , perform an independency test 

using mutual information as the deviance measures: 

 
( , )

( , ) = ( , ) log ,
( ) ( )i j

a X b Xi j

p a b
I X X p a b

p a p b 

 
 
 

   

where ,a b  take all the possible values of features ,i jX X  respectively. 

The result is a weighted graph where the weight of an edge ( , )i je X X  is 

( , )i jI X X ; 3) we compute a maximum spanning tree from the graph as 

the Chow-Liu tree. Since most relevant features are directly connected 
in a Chow-Liu tree, we exclude the redundant features from the model. 

6.4.1.2. Attack Detection 

Upon receiving new network traffic, the system collects only those 
features selected by the Chow-Liu algorithm. In our design, all features 
we selected are observable, i.e., their values can be directly extracted 
from the packet content or flow statistic. Let the set of features   
observed from a network flow is a subset of  , Y  is the class label of 
that flow, and = Y     be those features that are not observable, 
such as encrypted payload. The attack detection process is a maximum a 
posterior (MAP) query, i.e., finding the optimal assignment to all of the 
(non-evidence) features Y   given the evidence = e : 

 
,

( , | ) = arg ( , | ).max
y w

MAP Y e P y w e  

When all features are observed, i.e., =  , the MAP query further 
reduces to a conditional probability query: 

 
( , )

( | ) = .
( )

P Y e
P Y e

P e
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6.4.2. Graph Model Update 

Most of the existing works assume that the actual attack patterns follow 
the same true distribution as in training dataset. Sadly, it is not true. In 
reality, the traffic pattern is influenced a lot by temporal and spatial 
factors [16]. The problem is known as dataset shift problem [17]. 

To cope with the dataset shift in network traffic data, the system should 
tune the graph model based on new observed data. We consider two 
types of update depending on the deviance between new attack patterns 
and existing ones. If the deviance is large, a global update is required, 
which searches a new graph structure. However, the global update is too 
costly to be performed frequently. Therefore, when the deviance is small, 
we perform a local update, which updates the conditional probability of 
the nodes in the graph model. 

The idea of the local update is to estimate the ( )P Y , i.e., the distribution 

of the traffic types (normal or malicious), based on the newly observed 
data. Then we can use the new ( )P Y  to update the conditional 

probability distribution (CPD) of the features used in the attack 
detection. The local update process is efficient because it does not 
involve the graph structure change. In our scheme, the variable Y  
indicating the traffic type follows a multinomial distribution with k  
parameters 1 2q = ( , , , ),kp p p k   . We use a point estimator to 

estimate the q  using the newly observed data. The process works as 

follows. First, we model (q)P  using a Dirichlet distribution with 

parameters 1 2a = ( , , , )k    as 

 a 1

1

(a )
(q | a) = .

(a)

k

ik

k
Dir p 

   

Then we use the following equation to estimate the parameters q  for 

( )testP Y , i.e., the new distribution of variable Y . 

 

q

( | q) (q)
(q | ) = ,

( | q) (q)

P E P
P E

P E P
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where E  is the newly observed data. 

 (q | ) (q | a),P E Dir   

where 1 1 2 2a = ( , , , )k kN N N      , iN  is the data count in the new 

observation, of which Y  values are equal to iy . At last, the parameters 
q  for ( )testP Y  can be easily estimated as 

  = , , , .k
i

N
i i k i

N
     

This equation indicates that we can update our graph model by only 
updating the local conditional probability of each variable connected 
with the attack type Y  in the graph model, which is  
computationally inexpensive. 

Theoretically, updating the local CPD is enough if the underlying graph 
structure captures the relationship among the variables precisely. 
However, the precision of the graph structure is hard to measure in 
reality. If the time interval between the local update and the last global 
update is relatively short, the estimation result is good enough to 
approximate the joint distribution. We further study the impact and 
present the results in Section 6.5. 

6.5. DaMask Evaluation 

We carried out a thorough performance evaluation of the DaMask 
architecture under various scenarios. We run detection accuracy test on 
our attack detection system using real world network traffic The 
evaluation results are reported in this section. 

6.5.1. Evaluation Setting 

To evaluate the performance of the DaMask, we have set up a hybrid 
cloud. We use Amazon Web Service EC2 as our public cloud while we 
simulate the private cloud in our lab. The overall evaluation environment 
is shown in Fig. 6.3. We utilize Mininet [18], which creates a realistic 
virtual network on a computer, to emulate the SDN setting. 
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Fig. 6.3. The simulated hybrid cloud topology. 

6.5.1.1. Private Cloud 

The private cloud consists of two Linux servers in our lab. Both of them 
are running Ubuntu 12.10 32-bit operating system. One laptop (denoted 
as Linux A), which equips with AMD E1-1200 2  at 1.4 GHz CPU and 
4 GB memory, emulates the private cloud. The other desktop (denoted 
as Linux B) equips with Intel i7-2600 CPU at 3.4 GHz and 12 GB 
memory runs the network controller and DaMask with our attack 
detection system on it. Linux A and Linux B are connected through a 
Intel Express 460T 100 MB switch. We choose Floodlight [19] as the 
network controller since Floodlight controller can be easily extended and 
enhanced through its module loading system. 

We emulate a virtual network using Mininet in Linux A to extend the 
private cloud. The private cloud in Fig. 6.3 has one switch and two hosts. 
One of the hosts is an web server (Apache Http Server 2.2.26). The 
Floodlight controller and the DaMask modules are deployed in Linux B. 
The DaMask modules communicate with the controller through 
Floodlight’s APIs. 
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6.5.1.2. Public Cloud 

To measure the communication cost of DaMask, we use the Amazon 
Web Service (AWS) EC2 as our public cloud in our evaluation. We 
deployed two AWS EC2 instances as the company’s remote web servers. 
Both of them are Ubuntu T1-Micro instances. One of them (denoted as 
EC2West) is located at US West (Oregon) and the other (denoted as 
EC2East) is located at US East (N. Virginia). 

We use EC2West, which runs FlowVisor to handle network 
virtualization, to simulate the network administration of the public cloud. 
We emulate a virtual network in EC2East to extend the remote side of 
the company’s network, which is the public cloud part in Fig. 6.3. Similar 
with the private cloud extension, the extended public cloud also has one 
switch and two hosts, one of which is an Apache web server. The 
difference is that the switch is connected to the FlowVisor in EC2West 
instead of a network controller. 

6.5.1.3. Evaluation Dataset 

To evaluate the attack detection performance of our graphical model 
based detection module, we adopt the UNB ISCX dataset [20]. The UNB 
ISCX dataset labeled the DDoS attack network traffic, which means we 
have ground truth of the traffic. We extracted 18 features from the 
network traces. We divide the entire data set into ten equal shares. The 
first partition and the last partition are used as the training data and the 
testing data, respectively, while the other eight parts are used for the 
online model update process. 

6.5.2. DaMask Overhead 

6.5.2.1. Computation Cost of Attack Detection 

The computation overhead comes from three aspects: 1) The offline 
graphical model training process; 2) The online testing process; and  
3) The model updating process. We implemented DaMask-D module 
using R language and trained the model with the UNB ISCX dataset.  
Fig. 6.4 shows the computation costs of the model building process. 

As we mentioned before, the network traffic pattern difference between 
the training phase and the testing phase leads to inaccurate detection 
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result in practice. We evaluate the overhead of local update as follow. 
First, we use 10 % of the data as the training data, 10 % of the data as 
the testing data and divide the remain data to 8 update datasets. Then we 
use the training dataset to generate a model, denoted as basic . After 
that, we perform a global update and an iterative local update using the 
updating datasets to get two new models, denoted as global  and local  

respectively. The computation time of both processes is shown  
in Fig. 6.4. 

 

Fig. 6.4. Running time v.s. # of the training data. 

From the figure, we can see the model generation time is a linear function 
with respect to the number of data in the dataset; while the local update 
time is only related to the number of the data in the new observation. The 
simulation result validates the claim we have made in Section 6.4.2, i.e., 
the cost of a local update is much cheaper than the cost of a global update. 
We delay the detection accuracy comparison between global update and 
local update in 5.4. 

6.5.2.2. Communication Overhead 

DaMask introduces communication overhead since now the traffic 
towards the servers in the public cloud needs to be examined by the 
DaMask-D module located at the enterprise’s local network. To evaluate 
the communication overhead, we carried out several experiments. 
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We first measured the network bandwidth of our evaluation 
environment. We measure the network bandwidth by running iperf  
2 times a hour for a consecutive 24 hours. The average bandwidth 
between Linux A and EC2West is 27.4 MB/s, and the average bandwidth 
between Linux A and EC2East is 86.2 MB/s. The connection between 
Linux A and EC2East is better because our lab is located at east coast. 
We then tested the response time from the remote server with and 
without DaMask being deployed. We show our result in Table 6.1. The 
results show that the communication overhead is only related to the 
round trip time between the server running the FlowVisor in the public 
cloud and the server running the network controller in the private cloud. 
This is because we fixed the size of the message to be sent to the network 
controller. Therefore, the communication overhead is a constant if the 
link status of network is stable. 

Table 6.1. Communication time. 

Task Basic DaMask w/o Test DaMask w/ Test
  West   East   West   East   West   East 
Ping   196 ms  12 ms   425 ms  51 ms   462 ms 85 ms 
Http   2.4 s   1.7 s   2.3 s   1.6 s 2.4 s 1.6 s 

 

6.5.3. Adapting Topology Change 

One advantage of DaMask is that DaMask is able to adapt the network 
topology change caused by virtual machine migrations. To simulate the 
migration process, we added an additional switch, i.e., switch B in  
Fig. 6.3. Suppose the web server is migrated from the switch A to the 
switch B, DaMask need taking control of the switch B while dropping 
control of the switch A since the switch A no longer belongs to the 
company’s slice. Such re-configuration is accomplished by changing the 
flow space header of the company’s slice in FlowVisor.  
Re-configuration in FlowVisor can be efficiently done through 
Command Line Interface (CLI) of FlowVisor. Since FlowVisor can 
reload the new slice configuration without interrupting the service, this 
process can be done in real-time. 

After changing the flow space of the company’s slice, we sent ICMP 
packets to the web server that is attached to the switch B. All the ICMP 
packets were received by the company’s controller, which verifies the 
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company indeed had the control of the switch B. We further tested if the 
company’s control slice affected other users. We sent ICMP packets to 
the web server linked with the switch A and none of the packet was 
received by the company’s controller, which means the FlowVisor did 
not forward any ICMP packet to the company’s network controller. 

6.5.4. Detection Performance 

6.5.4.1. Data Shift 

We first use the data set to demonstrate that there exists data shift issue 
in network traffic. In practice, the detection model is built with a training 
set which is always a per-collected traffic data while the detection is 
performed over new traffic data. In our simulation, we use part of the 
data as training data to build the model, i.e., basic . We also build a 

model, i.e., global . As shown in Fig. 6.5, the model is different. Indeed, 

the attack traffic features different characteristics during different period 
as mentioned in [20]. Therefore, it is necessary to update the detection 
model in real-time to ensure the detection performance. 

Although performing a global update, i.e., building a new model based 
on the new observation data, solves the data shift issue, it is always too 
expensive to adopt in reality. Our approach which is update the CPDs on 
the original model mitigates the impact of the issues and therefore, 
improves the detection accuracy as demonstrated in next subsection. 

6.5.4.2. Accuracy 

The last evaluation is to test the detection accuracy of our attack 
detection system. 

Table 6.2 shows the detection rates for all three our models, basic , 

global  and local . The detection rate is the number of detected attacks 

divided by the number of total attacks. The miss detection rate is the 
number of missed attacks divided by the number of total attacks. We also 
reported the false positive rate and the true positive rate in the form of 
ROC curve in Fig. 6.6.  
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(a) Local update 

 

(b) Global update 

Fig. 6.5. Graph structures. 

Table 6.2. Detection accuracy. 

 Detection rate Miss detection rate

basic    74.02 %   25.98 %  

local    86.56 %   13.44 %  

global    89.30 %   10.70 %  
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Fig. 6.6. ROC curves for basic  (GM), global  (update both CPDs  

and structure) and local  (update CPDs only) and CTBN. 

As we expected, there is a performance degradation between training and 
testing set due to the data shift. Such degradation can be remedied by 
both local or global updates. local  performs better than basic  but a 

little worse than global . This is because local update can only remedy 

data shift deviation which is not big to change the model structure. Over 
time, the data shift deviation will cause the structure change of the 
underlying graphical model. At that time, a global update is needed. We 
show the graph structure learned from the training data in Fig. 6.5. We 
can see the feature selection property of our model from the figure, i.e., 
not all features are related to attack detection. And the graph model 
structure trained through local update (Fig. 6.4)is different from the one 
trained through global update (Fig. 6.4). It is worth mentioning that even 
the underlying graph structure changes, the detection accuracy won’t be 
degraded greatly. 

6.5.4.3. Comparison 

We first compare our detection scheme with the scheme in [9] which 
used continuous time Bayesian network (CTBN). The ROC curve in  
Fig. 6.6 shows that the performance of our method is similar to theirs. 
However, our model excels in terms of smaller computational cost 
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because latent variables are included in CTBN. In order to learn such 
variables, they used the EM algorithm which requires performing an 
inference for each iteration. Compared to that, our design does not 
contain any latent variables, and therefore does not need to perform 
inference during learning. Also, our model enjoys higher expressiveness 
compare to their CTBN template since we imposed less  
structural constraints. 

We also compare our detection results with Snort and Snort.AD. Snort is 
a popular open-source, signature-based network intrusion detection 
while Snort.AD is an anomaly-based preprocessor for Snort, which uses 
Holt-Winters model to detect anomaly network behavior including 
DDoS attacks. Snort reported 6.73 % attack packets because most of the 
attack packets are well-formatted HTTP requests, which can bypass the 
predefined signatures. Snort.AD, on the other hand, generated 23 more 
alerts than Snort, but only two of them are real attack. The reason that 
Snort.AD works poorly is due to the stealth of the application layer 
DDoS attack. 

6.6. Related Work 

Defending DDoS attack in traditional network has been studied for 
several decades. The surveys [21, 22] have included most of these work. 
Although our objective shares the similarity with them which is to defend 
DDoS attacks, our network environment which involves cloud 
computing and SDN is quite different from theirs. SDN technique has 
been used to address various network security. Jafarian et al. [23] 
proposed a random host mutation scheme using OpenFlow to achieve 
transparent moving target defense in SDN. Porras et al. proposed a 
security enforcement kernel for SDN in [24] to detect policy conflicts 
within the switches. Yao et al. utilized the SDN architecture to validate 
source addresses in [25]. The key difference between those work and 
ours is that they try to address the traditional network security threats 
using SDN to achieve better performance while we focus on the new 
challenges in the new network paradigm. Recently, Shin et al. [26] 
proposed an OpenFlow security application development framework, 
FRESCO, to enhance the secure application development in SDN. In 
contrast with FRESCO, our work focuses on DDoS attack challenges in 
cloud computing, which requires additional functionalities such as 
letting enterprises control the network slice other than those provided by 
existing solutions. 
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A network intrusion detection system (NIDS) differentiates malicious 
traffic from the benign traffic. There are two broad categories of IDSes: 
signature-based IDS and anomaly-based IDS. Signature-based detection 
systems, e.g. Snort, can detect known attacks by utilizing the signature 
of those attacks. Such systems require frequent signature updates and 
could only detect known attacks. Anomaly-based detection systems are 
able to detect abnormal network traffics which could potentially be 
attacks. Patcha and Park presented a survey of existing anomaly 
detection techniques in [27]. One of the popular techniques in anomaly 
detection is Bayesian network inference model, which has several 
advantages for data analysis [28]. Kruegel et al. [7] proposed a Bayesian 
classification algorithm to do intrusion detection by monitoring the 
system calls. Gupta et al. [8] incorporated multiple detection layers, all 
of which are Bayesian network based, to increase the detection accuracy. 
Xu et al. [9] used a continuous time Bayesian network model, which 
considers temporal sequence of events, to construct both network-based 
and host-based intrusion detection systems. Although we use the 
Bayesian network inference model to detect the DDoS attacks as well, 
the major differences between those works and ours is that our graphical 
model updates itself based on new observations continuously to address 
the potential dataset shift issue. 

6.7. Conclusion 

Cloud computing is already here to stay and SDN is gaining increased 
popularity. With both of the technology emerging as the future enterprise 
IT solutions, it is worthwhile to look at the implications of the 
combination of the two, particularly on the enterprise network security. 
In this chapter, we analyze the impact of cloud computing and SDN on 
DDoS attack defense. Based on our analysis, we identify the challenges 
and the benefits raised by these new technologies. We claim that with 
careful design, SDN could help with DDoS attack protection. To 
substantiate our finding, we proposed our solution of defending DDoS 
attack—DaMask architecture. Compared to the existing solutions, 
DaMask requires little effort from the cloud provider which means few 
changes are required from the current cloud computing service 
architecture. The SDN-based network monitoring and control 
mechanism allow companies to control and configure their defense 
mechanisms in the cloud effectively without affecting other cloud users. 
In addition, DaMask features a graphical model based anomaly detection 
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module. To enhance the detection accuracy, we proposed a model update 
method that updates the inference model periodically using Bayesian 
inference method. We also carried out a simulation study using real 
network traces to evaluate the performance. The results show that our 
proposed DaMask is successful in dealing with the new challenges 
raised. The SDN-based network management can rapidly adapt to the 
network topological changes. The detection algorithm is fast enough to 
perform online packet inference and it achieves a high detection rate. The 
proposed model update process saves a significant amount of time 
compared to regenerating a model while suffering hardly any 
performance loss in terms of detection accuracy. 
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