

Advances in Computers
and Software Engineering:
Reviews

Book Series, Volume 1

S. Y. Yurish
Editor

Advances in Computers and Software
Engineering: Reviews

Book Series, Volume 1

 International Frequency Sensor Association Publishing

S. Y. Yurish, Editor
Advances in Computers and Software Engineering: Reviews,
Book Series, Vol. 1

Published by IFSA Publishing, S. L., 2018
E-mail (for print book orders and customer service enquires):
ifsa.books@sensorsportal.com

Visit our Home Page on http://www.sensorsportal.com

Advances in Computers and Software Engineering: Reviews, Vol. 1 is an open access
book which means that all content is freely available without charge to the user or his/her
institution. Users are allowed to read, download, copy, distribute, print, search, or link to
the full texts of the articles, or use them for any other lawful purpose, without asking
prior permission from the publisher or the authors. This is in accordance with the BOAI
definition of open access.

Neither the authors nor International Frequency Sensor Association Publishing accept
any responsibility or liability for loss or damage occasioned to any person or property
through using the material, instructions, methods or ideas contained herein, or acting or
refraining from acting as a result of such use.

ISBN: 978-84-09-05559-3
e-ISBN: 978-84-09-05558-6
BN-20181005-XX
BIC: UMZ
BISAC: COM059000

Contents

5

Contents

Contents ... 5
Preface ... 9
Contributors .. 11

1. A Methodology for Performance Optimization of Data Parallel

Applications on Heterogeneous Computing Platforms 15
1.1. Introduction .. 15
1.2. On the Optimization of the Computation ... 18
1.3. Modeling Communications with -Lop .. 20

1.3.1. An Introduction to -Lop .. 20
1.3.2. Assessing the Optimization of Collectives .. 23
1.3.3. Building the Model Parameters ... 24

1.4. Optimizing the Communications of Hybrid Kernels .. 25
1.5. Conclusions .. 31
Acknowledgements ... 33
References ... 33

2. An XPath Query Aggregation Approach for XML
Publish/Subscribe Systems .. 35
2.1. Introduction .. 35
2.2. Related Work ... 38

2.2.1. Main Functional Components for XML Pub/Sub Systems 38
2.2.2. XML Query Containment and Homomorphism 40
2.2.3. Node Labeling or Indexing Schemes for XML Database Queries 44
2.2.4. XSearch and TwigStack .. 45

2.3. Our XPath Query Aggregation Approach Using Region Encoding Scheme 46
2.3.1. Global Query Tree, Region Node Coding and the Data Structures 47
2.3.2. Containee Algorithm of the New Approach .. 51
2.3.3. Container Algorithm of the New Approach .. 58
2.3.4. Complexity Analysis ... 63
2.3.5. Label Maintenance for Dynamic Query Updates 64

2.4. Experimental Evaluation .. 65
2.4.1. Experiments with NITF Queries ... 66

2.4.1.1. Processing Time Versus the Number of NITF Queries 69
2.4.1.2. Processing Time Versus the Number of Branches

in NITF Queries ... 71
2.4.2. Processing Time for Large Number of Queries 71
2.4.3. Parsing Time for XPath Queries and Building Time

for the Global Query Tree .. 72
2.4.4. Building Time for Region Codes and Label Lists 72
2.4.5. Space Usage for NITF Experiments ... 73

2.5. Conclusions .. 74
Acknowledgments ... 74
References ... 75

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

6

3. A Small World Load-Balancing Approach for Queues
Based Systems ... 79
3.1. Introduction .. 79
3.2. Literature Review ... 81

3.2.1. Background on Small World Networks ... 81
3.2.2. Related Works .. 82

3.3. Functional Small World Network (FSW) ... 82
3.3.1. Overview .. 82
3.3.2. Constructing Functional Small World (FSW) Overlay Network............. 85

3.3.2.1. Functional-Clustering (FC) ... 85
3.3.2.2. Cluster-Formation ... 86
3.3.2.3. Overlay Network Construction.. 87

3.4. Dynamic Load-Balancing ... 88
3.4.1. Problem Formulation ... 89
3.4.2. Our Proposed Algorithm .. 89

3.4.2.1. The Initialization Stage ... 91
3.4.2.2. The Information Broadcasting Stage ... 92
3.4.2.3. Computing the Average Effective-Load .. 93
3.4.2.4. Finding the Set of Assistant-Neighbors Stage 93
3.4.2.5. Workload Transfer Strategy .. 93
3.4.2.6. Load-Balancing Mechanism (Procedure LB) 94

3.5. Experiments .. 95
3.5.1. Experimental Setting .. 95
3.5.2. Comparative Study ... 97

3.5.2.1. Average Response Time .. 97
3.5.2.2. Throughput .. 98
3.5.2.3. Communication Overhead ... 99
3.5.2.4. Movement Cost ... 99
3.5.2.5. Makespan .. 100
3.5.2.6. Queue Length .. 101

3.5.3. Results and Discussion ... 101
3.6. Conclusion .. 102
References ... 103

4. Error Model Identification of Data Acquisition Systems
by Nonstandardized Test Signals ...107
4.1. Introduction .. 107
4.2. Selected DAQ Error Parameters and Their Testing .. 108

4.2.1. Basic DAQ Parameters .. 108
4.2.2. Standardized DAQ Testing Methods .. 110

4.3. Testing of DAQ Based on the Error Model Identification 113
4.3.1. Error Models .. 113
4.3.2. Architecture Depended Models .. 114
4.3.3. Behavioral Error Models ... 115

4.3.3.1. Unified Error Model .. 116
4.3.3.2. Error Model Identification Using Nonstandardized Signals 118

4.4. Experimental Results .. 125

Contents

7

4.5. Conclusions .. 129
References ... 129

5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds 133
5.1. Introduction .. 133

5.1.1. Motivation .. 133
5.1.2. Methodology... 134

5.2. Problem Specification .. 136
5.2.1. Problem Analysis ... 137
5.2.2. Hypothesis .. 139

5.3. Affinity Performance Evaluation .. 140
5.3.1. Experimental Affinity Results ... 142

5.4. Allocation Model .. 145
5.5. Evaluated Job Scheduling Strategies .. 147
5.6. Simulation of Scheduling Solution ... 149

5.6.1. Simulation with Concurrent Jobs Based on Affinity of Experiments ... 150
5.6.2. AffinityAwareFifoScheduler Model .. 152

5.7. ProSched: The Affinity Aware Scheduler .. 154
5.7.1. Scheduler Method ... 155
5.7.2. Scheduler Results ... 160

5.8. Related Work ... 165
5.9. Conclusion .. 169

5.9.1. Future Work ... 170
Acknowledgment .. 171
References ... 171

6. DDoS Attack Protection in the Era of Cloud Computing
and Software-Defined Networking ... 175
6.1. Introduction .. 175
6.2. Analysis .. 178

6.2.1. Cloud Computing ... 178
6.2.2. Impact of Cloud Computing on DDoS Attack Defense 178
6.2.3. Software-Defined Networking .. 180
6.2.4. Impact of SDN on DDoS Attack Defense .. 181
6.2.5. DDoS Attack Defense in Cloud Computing and SDN 181

6.3. DaMask Design .. 182
6.3.1. Design Overview .. 182
6.3.2. Workflow of DaMask .. 183

6.3.2.1. DaMask-D Module ... 184
6.3.2.2. DaMask-M Module ... 184

6.4. Graphical Model Based Detection System ... 185
6.4.1. Graphical Inference Model .. 185

6.4.1.1. Automatic Feature Selection ... 185
6.4.1.2. Attack Detection ... 186

6.4.2. Graph Model Update ... 187

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

8

6.5. DaMask Evaluation .. 188
6.5.1. Evaluation Setting .. 188

6.5.1.1. Private Cloud ... 189
6.5.1.2. Public Cloud .. 190
6.5.1.3. Evaluation Dataset .. 190

6.5.2. DaMask Overhead .. 190
6.5.2.1. Computation Cost of Attack Detection 190
6.5.2.2. Communication Overhead ... 191

6.5.3. Adapting Topology Change .. 192
6.5.4. Detection Performance ... 193

6.5.4.1. Data Shift .. 193
6.5.4.2. Accuracy ... 193
6.5.4.3. Comparison ... 195

6.6. Related Work .. 196
6.7. Conclusion .. 197
Acknowledgment ... 198
Reference ... 198

Index ...201

Preface

9

Preface

Every research and development is started from a state-of-the-art review.
Such review is one of the most labor- and time-consuming parts of
research, especially in high technological areas as computers and
software engineering. It is strongly necessary to take into account and
reflect in the review the current stage of development. Many PhD
students and researchers working in the same area must make (and do it)
the same type of work. A researcher must find appropriate references, to
read it and make a critical analysis to determine what was done well
before and what was not solved till now, and determine and formulate
his future scientific aim and objectives.

To help researchers save time and taxpayers money, we have started to
publish ‘Advances in Computers and Software Engineering: Reviews’
open access Book Series.

The first volume of ‘Advances in Computers and Software Engineering:
Reviews’, Book Series contains 6 chapters written by 21 authors from 7
countries: Brazil, Canada, Palestine, Slovakia, Spain, Taiwan and USA.

Chapter 1 describes a methodology for performance optimization of data
parallel applications on heterogeneous computing platforms - complex
systems composed of heterogeneous multi-core processors and
accelerators (e.g. Graphic Processing Units and Xeon Phi), connected by
a hierarchy of communication channels with a focus in the optimization
of their communication cost.

Chapter 2 presents a new XPath query aggregation approach based on a
node region encoding scheme which provides positional information for
nodes in an XML query tree. Compared with the existing aggregation
approaches the proposed algorithm can efficiently evaluate the
ancestor/descendant operator (a//d) and the parent/child operator (p/c)
between any pair of nodes in XPath queries and can process a complex
tree-structured query as a single unit without having to decompose it into
sub-queries and performing a post-processing task.

Chapter 3 reports the performance improving of load balancing
algorithm by considering both the structural and the technical load-
balancing factors by proposing a two-stage load-balancing approach.
The approach, first, designs an overlay network that employs the concept

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

10

of small world in order to reduce the effect of the structural factors and
then, applies an improving load-balancing that considers the technical
factors within the constructed overlay network. Load-Balancing
Approach for Queues based Systems.

Chapter 4 presents selected non-standardized data acquisition systems
nonlinearity test methods. The methods are based on the identification of
unified error model parameters. These can be measured using non-
standardized test signals such as triangular and exponential ones.

Chapter 5 describes an affinity aware scheduler of cluster virtual nodes
on clouds and reports the simulation of the proposed model.

Chapter 6 reviews DDoS attack protection in cloud computing and
software-defined networking. The potential issues under this paradigm
as well as opportunities of defending DDoS attacks are also discussed.

We hope that readers enjoy will this book and it will be a valuable tool
for those who are involved in research and development in appropriate
area.

Sergey Y. Yurish,
Editor, IFSA Publishing Barcelona, Spain

Contributors

11

Contributors

Bandini M.
National Laboratory of Scientific Computation (LNCC), MCTIC,
Quitandinha, Petrópolis, Brazil
Fluminense Federal University (UFF), Rio de Janeiro, Brazil

Barbosa J. P.
National Laboratory of Scientific Computation (LNCC), MCTIC,
Quitandinha, Petrópolis, Brazil
Military Institute of Engineering (IME), Rio de Janeiro, Brazil

Yang Cao
Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada

Eman Yasser Daraghmi
Palestine Technical University Kadoori, Tulkarm, Palestine

Juan C. Díaz-Martín
Escuela Politécnica, University of Extremadura, 10003, Cáceres,
Spain

Y. Thomas Hou
Virginia Polytechnic Institute and State University, Blacksburg, VA,
USA

Kloh H.
National Laboratory of Scientific Computation (LNCC), MCTIC,
Quitandinha, Petrópolis, Brazil
Fluminense Federal University (UFF), Rio de Janeiro, Brazil

Wenjing Lou
Virginia Polytechnic Institute and State University, Blacksburg, VA,
USA

Chung-Horng Lung
Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

12

Shikharesh Majumdar
Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada

Linus Michaeli
Faculty of Electrical Engineering and Informatics, Technical
University of Košice, Košice, Slovakia

Oliveira V. D.
National Laboratory of Scientific Computation (LNCC), MCTIC,
Quitandinha, Petrópolis, Brazil
Military Institute of Engineering (IME), Rio de Janeiro, Brazil

Pinto R.
Military Institute of Engineering (IME), Rio de Janeiro, Brazil

Rebello V.
Fluminense Federal University (UFF), Rio de Janeiro, Brazil

Juan A. Rico-Gallego
Escuela Politécnica, University of Extremadura, 10003, Cáceres,
Spain

Schulze B.
National Laboratory of Scientific Computation (LNCC), MCTIC,
Quitandinha, Petrópolis, Brazil

Jan Šaliga

Faculty of Electrical Engineering and Informatics, Technical
University of Košice, Košice, Slovakia

Bing Wang
Virginia Polytechnic Institute and State University, Blacksburg, VA,
USA

Yokoyama D.
National Laboratory of Scientific Computation (LNCC), MCTIC,
Quitandinha, Petrópolis, Brazil

Shyan-Ming Yuan
National Chiao Tung University, Hsinchu, Taiwan

Contributors

13

Yao Zheng
Virginia Polytechnic Institute and State University, Blacksburg, VA,
USA

Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

15

Chapter 1

A Methodology for Performance
Optimization of Data Parallel
Applications on Heterogeneous
Computing Platforms

Juan A. Rico-Gallego and Juan C. Díaz-Martín1

1.1. Introduction

Modern High Performance Computing (HPC) platforms are complex
systems composed of heterogeneous multi-core processors and
accelerators (e.g. Graphic Processing Units and Xeon Phi), connected by
a hierarchy of communication channels. Such heterogeneity is partially
due to the necessity of increasing the system performance keeping the
energy cost at a reasonable level.

A data parallel kernel is a computationally intensive task conceived for
being executed by a set of processors, each running the same code on a
different data region of a global data space. It faces the challenge of
obtaining as much performance as possible from HPC platforms. Current
kernels are devoted to numerical linear algebra or signal and image
processing, as well as to partial differential equation solvers used in
engineering and physics. Applications built upon one or more of these
kernels are known as data parallel applications. Hence, from now on we
will use the terms data parallel application, data parallel kernel, or simply
kernel interchangeably.

A computational resource can be a single core, a pair of them, a socket
or a full node. Also a GPU together with is monitor core, etc. From now

Juan A. Rico-Gallego
Escuela Politécnica, University of Extremadura, Cáceres, Spain

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

16

on we understand the term processor as one of these computational
resources. For executing a data parallel kernel, a possibly multithreaded
process is assigned to each processor of the platform. Along this chapter,
the terms computing resource, processor and process actually refer to the
same thing.

Each of these processes always needs data from others processes to
compute its own values. Therefore, the necessity of communication
appears periodically during its execution. MPI [1] is the standard
communication interface in HPC and that which we will use here. It
defines the primitives that a processes needs to interchange messages.
MPI includes simple point-to-point operations between two processes,
as well as operations performed collectively by a group of processes, as
broadcasting a message to the rest of the group. MPI also includes other
facilities such as file I/O handling, process management, etc.

Mapping the data space of a kernel to the available processes of a
heterogeneous platform is certainly a complex problem. The challenge
is not only to balance the overall computational load of the kernel among
the available computing resources, but also to optimize the completion
time of its communications. In current practice, the load allocation is
determined through a set of thorough tests of a shortened version of the
kernel on, in turn, a representative subset of the computing resources of
the target platform. This approach has three main drawbacks:
1) The programmer has to invest time to design and implement the test;
2) Each test uses expensive computational resources along a significant
amount of time, and 3) Often it is hard to correctly extrapolate
estimations obtained from a simplified application on a simplified
platform. In this landscape, the contribution of this chapter is to introduce
a model-based methodology that replaces the mentioned testing tasks of
the kernel by a fully analytical modeling of its behavior. Furthermore, it
aims minimizing the global execution time of the kernel in current
heterogeneous platform, with special focus on the optimization
of the communications.

Optimization of computation and communication in data parallel
applications are usually addressed separately. Regarding the
computation, two independent techniques are applied. The first one is
balancing the workload, that is, assigning to each process a data region
with a size that is proportional to its capabilities. Many possibilities exist
in this regard. We know each of these balanced region-to-process
correspondences as a data mapping. The second technique consists of

Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

17

writing code that makes optimal use of the current deep memory
hierarchies by fighting the so named memory wall, which can limit
severely the computational throughput. Communication optimization is
addressed through a set of tests, which search for a data mapping that
reduces the communication flow in the slower channels of the system,
usually the network.

Formal analysis of data communication through Communication
Performance Models contributes to understand the communication
complexities in current platforms, with the goal of predicting their cost
and ultimately improving their performance. Communication
performance models provide an analytic framework that represents a
communication as a parameterized formal expression. The evaluation of
this expression determines the cost of the communication, as function on
system parameters, in terms of time. Many models have been proposed,
covering different aspects of the communication. -Lop [7] is a model
that addresses the challenge of accurately modeling MPI
communications on HPC platforms, from traditional homogeneous
clusters, to current heterogeneous clusters composed of multi-core CPUs
and accelerators. -Lop relies on the concept of Concurrent Transfers of
data, and uses this concept as a building block to represent the
communications on hierarchical communication channels, capturing the
impact of contention and process mapping.

The methodology mentioned above involves a set of steps. It departs
from a processor layout π, a relation of the computing resources of the
platform that will support the application. Each item of this relation
describes the resource, such as a “GPU g in machine m”, “cores c and d
of socket s in machine n”, etc. Departing from a deployment π of P
processors, the general steps to follow are:

1. Balance the computational load between the processors. In a
heterogeneous platform the processors have different computing
capabilities. We say, therefore, that the corresponding processes
will have different speeds. This step involves the characterization
of the speeds of the processes by a vector },,{ 10  Psss  . As a

result, process pi will be later assigned a data region with a size
proportional to its speed si. Usually, such speed characterization is
done through benchmarking.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

18

2. Partition the data space of the application between the available
processes by determining the precise geometry of each and every
data region that outputs a satisfactory load balance. The partition is
hence described for 1D data spaces by a vector
d  {xi,wi,0  i  P}, and for 2D space by a vector
d  {xi, yi,wi,hi,0  i  P}. In this last case the resultant partition
is often known as a data tiling.

3. The partition d resultant of step 2 is subject to multiple variations or
data mappings on π. All of them are modeled and evaluated to
choose that which minimizes, or at least significantly improves, the
cost of its involved communication.

Such steps are discussed in the rest of the chapter. Section 1.2 fairly
describes the issue of the workload balancing between the processes of
an application, as well as the partitioning of the data space (steps 1
and 2). Section 1.3 more exhaustively describes the use of -Lop to
analytically model, evaluate and optimize communications in
applications (step 3). Finally, Section 1.4 concludes.

1.2. On the Optimization of the Computation

In a homogeneous platform, a set of identical processors connected by a
network, the speed of the processes of a data parallel application is
identical, and hence its computational load is evenly distributed. In a
heterogeneous platform, however, the processes present different speeds
due to the diversity of capabilities of their related resources, currently
multi-core CPUs, GPUs, Xeon Phis, etc. For a data parallel application,
achieving the optimal performance out of a heterogeneous system is a
demanding task that requires to unevenly distributing the application
workload between the processes. The objective is balancing the
computational load, preventing faster processes to wait for slower ones
at communication points.

The computational load balancing can be formulated as a partitioning
problem [3]. Departing from n independent computational units of equal
size composing the data space, the goal is to distribute them among a set
of P processes },,{ 10  Pppp  , in a way that the workload will be
(probably unevenly) balanced. The processes are characterized by their
speeds },,{ 10  Psss  , where si is a constant describing the number
of computational units the process is able to perform by time unit. Such

Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

19

speed values are usually obtained by benchmarking the processes with a
simplified version of the final application computation. More advanced
characterization of the speed of a process exists [4], as a function of the
problem size s(x), hence including the impact of the memory hierarchy,
operating system paging policy, etc. in the computational cost. Let

},,{ 10  Pnnn  be the number of computational units assigned to the
processes. Each process pi has an execution time ti = ni/si. The overall
execution time of the application is given by the slower process, that is,
that with the maximum ti, hence, an optimal workload distribution
minimizes the expression max ti, 0  i  P .

FuPerMod [5] is a software tool that covers the first two steps of the
methodology following different state of the art approaches and
algorithms. It generates a partition from a 1D or a 2D data space for P
processes running on a high performance heterogeneous platform. The
developer provides the tool with a benchmarking code and provided
processor layout π. First, FuPerMod generates the per-process speed
characterization s by executing the benchmark. Afterwards, FuPerMod
produces the partition d. One of the algorithms considered in FuPerMod
is the well-known SUMMA parallel matrix multiplication kernel, which
calculates the large scale C = A × B problem in a HPC platform: load
balancing decides how many data points in the matrices are going to be
assigned to every process in proportion to its speed, and partition decides
what specific data points in rows and columns are going to be assigned
to a process for computation. FuPerMod produces partitions in 2D
rectangles with an area proportional to the assigned process speed, tiling
the full matrix. This concrete problem has been demonstrated to be
NP-Complete [6], so a near-optimal distribution is achieved [4].

The main limitation of FuPerMod is that its solution partition d does not
consider the cost of the process communications between regions, a fact
that opens research opportunities to the third step of the methodology
[4, 6, 10]. Although in a balanced partition the cost of the communication
is usually lower than that of computation, it still is an important subject
of optimization, which can be faced by analytical approaches [10].
Departing from a balanced partition produced by the FuPerMod tool, the
rest of the chapter develops an analytical approach through the -Lop
communication performance model.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

20

1.3. Modeling Communications with -Lop

This section describes the recently proposed model -Lop [7]. Simple
modeling of point-to-point messages and collective operations in
homogeneous systems is introduced. Next we show -Lop in action,
modeling a broadcasting algorithm under two MPI rank mappings in
order to choose at run-time the one with lower cost. We finally discuss
the method to build the parameters of the model.

1.3.1. An Introduction to -Lop

As any other model, -Lop predicts the cost of inter-process
communications in terms of time. The model has been proven to be
accurate enough to estimate the cost of point-to-point and collective
communication patterns in HPC platforms [7-9]. -Lop acknowledges
the concurrent transfer as the building block of a point-to-point
transmission. It captures the fact that a channel bandwidth shrinks when
transfers (data movements between memory buffers) are concurrent, a
feature usually ignored in other models, but still key in the current
platforms of multicore nodes.

The cost of a point-to-point message transmission is modeled using two
parameters. The Overhead o(m) represents the startup time or time
needed to start the injection of data in the channel from the invocation of
the operation. The transfer time L(m,) is the time invested in each one
of the transfers (data movements) composing the transmission. The
-Lop expression describing the message transmission cost is

1

0

() () (,)
s

i

T m o m L m 




  ,

with m the size of the message and s the number of transfers the message
needs to reach the destination. The overhead depends on the message
size, because communication libraries as MPI provide different methods
with different startup times depending on the length of the message to
transmit. For instance, the use of the eager protocol for small messages
and a rendezvous protocol to avoid flooding the receiver for larger
messages. Hence, it can be considered a step function. The transfer time
depends on the message size m, but also on the number of concurrent
transfers progressing concurrently , which lowers the effective channel

Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

21

bandwidth. Consider the following scenario: in a multicore node, there
could be several processes communicating in pairs. If all the
transmissions are simultaneous, as happens in a collective, the physical
memory bandwidth is reached. The net effect is that the bandwidth
available for each pair of processes is only a portion of the total. Models
ignoring this fact lead to low scalable predictions on current platforms.
Fig. 1.1 represents the cited scenario of a shared communication channel,
comparing a single message transmission with two concurrent message
transmissions of the same size. Note that the data movements progress
through an intermediate shared memory buffer, leading to transmissions
composed of two transfers. Following expressions compare analytically
both costs:

() () 2 (,1)leftT m o m L m   and () () 2 (,2)rightT m o m L m   .

Fig. 1.1. Two message transmissions (isolated and concurrent) represented
as the addition of transfers in a shared memory communication channel.

The definition of the transfer time L takes into account that k concurrent
transfers have a cost between that of a single transfer and that of k
sequential ones, that is, (,1) (,) (,1)L m L m k k L m   . As well, as
assumed by most models, the transfer time cost grows linearly with the
message size, that is (,) (,)L k m k L m    .

-Lop adopts a compositional approach for representing the concurrency
of full point-to-point transmissions, by using the concurrency operator
||. As an example, the cost of the pair of concurrent transmissions shown
at the right side of Fig. 1.1 can be represented as

() || () 2 || () () 2 (,2)T m T m T m o m L m    . Note how the amount of
concurrent transmissions represented using the concurrency operator is
propagated to the  parameter of the transfers.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

22

MPI collective operations simplify the development by providing
communication patterns for a group of processes. They usually have
positive effect in the performance of an application. Communication
library designers deal with the complexity of its implementation, and
usually provide with different algorithms for the same collective, with
an election based on variables as the message size and/or number of
processes. Formal analysis and modeling of such collectives allow
understanding the behavior and optimization points of the application,
and the performance of the collective itself.

Following, -Lop is used to model a simple collective operation: a
broadcast implemented using the binomial tree algorithm [8]. The
operation is defined in the MPI standard as MPI_Bcast. Fig. 1.2 shows
the intermediate deployment of the messages in the binomial tree, from
the process called root (ranked as 0 in the example) to the rest of the
processes in the group (P = 16) in a set of stages (

�

log2 P  4).

Fig. 1.2. A binomial tree broadcast collective algorithm. A process called root
(p = 0) sends a message to the rest of processes in the group (P = 16).
The algorithm executes in log2P = 4 stages, with the number of concurrent
transmissions doubling in each stage.

The next cost expression allows estimating the cost of the algorithm for
different number of processes P and message size m is. Note the ability
of -Lop to model the contention in the channel, by making the
transmissions of bottom stages to perform worse, because a growing
number of them have to share the channel bandwidth.

2

2

log 1

0

log 1

() 2 || ()

() 2 || () 2 || ().

P
s

s

P

m T m

T m T m T m







    

   




Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

23

Finally, channels are denoted in -Lop by the superscript {0,1, }c   ,
where c = 0 is the channel with a highest performance. In a multi-core
cluster, c = 0 refers to shared memory, and c = 1 to network. T c (m)
represents the cost of a transmission through the channel c.

1.3.2. Assessing the Optimization of Collectives

A simple example of the usefulness of -Lop is presented next. Let be a
data parallel kernel communicating with MPI. Each of the processes of
the kernel has an associated MPI rank. This association is often known
as the MPI rank mapping. The point is that changing the MPI rank
mapping can increase significantly the performance of a collective. Next
we illustrate how -Lop aids to make of such decision before invoking a
binomial broadcast, based on the cost of primitive under two widely used
MPI rank mappings, sequential and round-robin. Fig. 1.3 represents a
platform of 2M  nodes of 8Q  cores per node, for a total of
16 processing units. Each shown number is the rank of the processor it
labels. Note that Sequential mapping has the property that a processor
labeled with rank r belongs to the node /r Q , while under Round Robin
a processor labeled with rank r belongs to the node modr M . The
-Lop costs under the two mappings are represented in the Table 1.1.

Assuming 1 0() ()T m T m and || () || ()c ck q k T m q T m   , the cost
expressions in Table 1.1 reflect the necessity of choosing the correct
mapping even in a simple platform with only two nodes. In this case,
sequential mapping behaves better (lower cost due to lower contention
in the network) than Round Robin. The fact is that a collective operation
behaves better under a specific mapping. Hence, an off-line evaluation
of the execution environment based on analytical modeling of the
communication can produce an important performance improvement.

Table 1.1. Binomial tree cost in a multi-core cluster with two nodes and eight
cores per node.

MPI Rank Mapping Binomial broadcast cost expression

Sequential Mapping 1 0 0 0() 2 || () 4 || () 8 || ()T m T m T m T m  

Round Robin Mapping 0 0 0 1() 2 || () 4 || () 8 || ()T m T m T m T m  

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

24

Fig. 1.3. Sequential and Round Robin mapping in a multi-core cluster of two
identical nodes of eight cores per node. A binomial broadcast algorithm is
performed in this machine. Bold lines represent network communications, while
thin lines mean the better performing shared memory. The -Lop analysis of
Table 1.1 determines the cost of the broadcast under both mappings.

1.3.3. Building the Model Parameters

In any communication performance model, the method to choose and
assess its parameters is critical to reach a good level of approximation to
the actual costs. Of course, the value of these parameters is platform
dependent and application independent. The issue here is that they have
to be estimated with precision in order to achieve scalability in the
predictions. A poor methodology to estimate these parameters leads to
unrealistic and even self-defeating cost estimations.

In -Lop, the parameters have to be built per channel, e.g. shared memory
and network. The overhead o is measured using point-to-point
transmissions for growing message lengths m, primarily to capture the
cost incurred by the protocol of the underlying communication library,
being eager, rendezvous or any other, which switches after a given
threshold m. Source and destination processes are placed in the same and

Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

25

in different nodes to measure the overhead of shared memory and
network respectively.

For the transfer time L, -Lop proposes a methodology based on a
collective operation like that of Fig. 1.4, a ring between four processes
composed by MPI_Sendrecv. An increasing number of processes
exhausts the communication channel to get L(m,) for a range of message
size m and number of concurrent process . Actually, the parameters are
measured for a set of discrete m values, and the final transfer time
function is interpolated.

Fig. 1.4. Ring operation designed to measure the transfer time in -Lop.

Due to the importance of the accuracy in the parameter measurement, a
method for a better fitting of L(m,) can be used after their measurement.
A linear regression method is proposed in [7] for improving the accuracy
of the measurements of L(m,), specially for short messages, where the
contention is difficult to ensure. An over determined linear system is
posed, where each equation is the -Lop cost expression of a given
operation, equaled to its measured real-life cost. The target L(m,) terms
will appear now in more than one equation and the best fitting value
is obtained.

Albeit of other type, statistical treatment of the data applies also to the
building procedure, which, for instance, must perform a high number of
repetitions until a satisfactory confidence error is achieved, avoiding the
simpler statistical mean, more sensitive to outliers.

1.4. Optimizing the Communications of Hybrid Kernels

A data parallel kernel running on a heterogeneous platform is often
known as a hybrid kernel. This section presents -Lop extensions for

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

26

heterogeneous platforms and describes the optimization of a Wave2D
hybrid kernel.

Obtaining the optimal performance of a heterogeneous platform requires
to unevenly distributing the computational load of a data parallel
application between processes with different speeds. In these scenarios
the amount of data to communicate by each process varies, and
concurrent transmissions through different communication channels
simultaneously occurs, which leads to more complex cost expressions
than those in homogeneous systems previously discussed.

Expressions appearing in homogeneous and hierarchical modeling of
point-to-point and collectives are basically of the following two types:
1) expressions in the form n ||T c (m) representing the cost of n
concurrent transmissions of a message of size m through a
communication channel c, and 2) T c (m1) || T c (m2), representing the
cost of a sequence of two transmissions of different message sizes
through the same communication channel. The expressions to model
communications in heterogeneous systems become more complex.

-Lop provides with extensions to evaluate these types of expressions
[9], which shuffle concurrent and sequential transmissions of different
message lengths progressing through the same or different
communication channel, e.g. T c1(m1) || T c 2 (m2) . Anyway, expressions
of actual applications rapidly become complex enough to require an
automatic evaluation.

The -Lop toolbox [2] is a package that provides with a C function
interface to automatically generate the communication cost expressions
of a data parallel kernel. Their inputs are a data partition d and the -Lop
parameters built for the platform. The toolbox provides with facilities to
efficiently evaluate the communication cost of a set of partitions, leading
to an optimal election.

The cost of the communications of a hybrid kernel derives from 1) The
built partition d; 2) The data mapping on the processors platform, which
decides the channels used for their communication, and 3) The type of
communication primitives used, being collectives or point-to-point
transmissions. Regarding the second and third issues, instead of running
a set of thorough test to find the optimal data mapping in the platform,
the analytical approach based on -Lop analyzes, estimates their costs
and optimizes the communications.

Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

27

Following, a hybrid kernel is evaluated and optimized as an example of
data parallel applications in heterogeneous HPC platforms. The kernel is
a wave equation solver, from now on named Wave2D. Its 2D data space
is an N×N matrix of double precision real values. The left side of Fig. 1.5
shows this matrix at a given step of the algorithm. Regarding
computation, the kernel uses the technique of finite differences to
numerically solve the 2D wave equation:

2 2 2

2
2 2 2

.
u u u

c
t x y

  
  

 
   

 

Fig. 1.5. Left: visualization of discrete solution u(x,y,t) of the Wave2D equation
in an N×N data mesh at the iteration (or step) t = 102, for particular initial and
boundary conditions. Right: a data partition of the data space between P = 8
processes running on two nodes, represented with grey and white backgrounds,
with the halo sending of process p = 1. Also shown is the stencil to update the
data space (New matrix) from the two previous instances in time (Cur and Prev).

We have set up an experimental platform composed of two nodes, each
with two GPUs, connected by a network and P = 8 processes. Hence, the
processes communicate through shared memory or network depending
on their location. Inside each node, each process may run on a different
type of resource, either a set of cores or a GPU. In any case the FuPerMod
tool provides a load-balanced partition following a column-based
approach [6], as shown at the right side of Fig. 1.5. As we are now
interested in the cost of the communications, the color of the data region
identifies the machine as the location of the process, not the specific
processor. Being a FuPerMod output, this partition does not take into

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

28

account the communication cost derived from the usage of different
channels, but only the relative speed of the processes. A question arises:
could we find a data mapping more efficient in terms of its
communication costs?

Answering this question requires studying the kernel more in depth.
Along time t, u(x,y,t + 1), represented by the matrix New, is generated
from its previous instances u(x,y,t) and u(x,y,t – 1), represented by Cur
and Prev matrices respectively, according to the following stencil (at the
furthest right of Fig. 1.5):

 2

2 2

2 2

(,) 2 1 2 (,) Pr (,)

(1,) (1,)

(, 1) (, 1).

New i j c Cur i j ev i j

c Cur i j c Cur i j

c Cur i j c Cur i j

   

   

  

Every data point in matrix New is calculated as a combination of the
neighbourhood points in matrix Cur Hence, calculating the boundary
points of the region assigned to a process at the step t + 1 requires a
previous communication stage of the needed data from neighbourhood
processes at step t. Right side of Fig. 1.5 shows how processor p1
communicates its boundary data to his neighbours.

As the computation is (unevenly) load balanced, all processes come into
the communication phase at the same time. Hence, all processes
interchange their boundaries simultaneously. From this assumption, we
can derive a communication cost expression of the application:

  
1

()

0
|| , () .

p

P
c i

p p
p i

t with T m i




 

        


Communication cost of process p is represented by  p . All of the

processes communicate concurrently, so the total cost  is calculated
using the concurrency operator || for every process communication over
t steps. A process p transmits its boundary data to its neighbour processes
(the set p) using the channel c(i) for transmitting the message of size

m(i) to the neighbour i. The transmissions of a process to its neighbours
are accomplished sequentially, hence the summatory. Right side of the
Fig. 1.5 shows the transmissions from p = 1 to its neighbours
p  {2,4,3,6,0,5}, with a cost per iteration of:

Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

29

 
1

() 1 1 0
1 2 4 3

0 1 0
6 0 5

1 1 0

0 1 0

() () () ()

() () ()

(34) (14) (36)

(34) (46) (4).

c i

i

T m i T m T m T m

T m T m T m

T T T

T T T



    

  

  

  



This cost expression, which only represents the communications of one
process (p1), is indeed complex enough to require evaluation using an
automatic tool, as we will see.

Once modeled the communication cost of Wave2D, the above question
about reducing this figure turns into a more specific one: How could we
re-arrange the regions in the data space to reduce the network
communication? Analytical modeling allows answering affirmatively to
such question by modeling and estimating the cost of all possible
rearrangements (data mappings). Nevertheless, this procedure is
unfeasible when the number of processes grows, because the number of
combinations grows exponentially. In practice, two simplifications help
us here: 1) using heuristics (that highly depend on the application and its
specific communications) to facilitate the data mapping decisions, and
2) using an automatic tool to efficiently modeling and evaluating each
data mapping.

A straightforward optimization decision for Wave2D is shown in
Fig. 1.6.

Fig. 1.6. Switch of data mapping, by rearranging the data regions assigned
to processes in the 2D mesh (data space) in such a way that network

transmissions have been minimized.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

30

It is based on the assumption that rearranging as close as possible the
regions assigned to processes running on the same node increments the
shared memory communication, and hence, it decreases the network
communication, more expensive in terms of time. Note that the complete
data space is tiled with the rectangles assigned to each processes, so that
every process performs the same amount of computational work on a
different set of data points. Hence, the workload balance does not
change.

The key feature of the -Lop library is that it allows evaluating the two
data mappings in Fig. 1.6 automatically. Pseudo-code in Table 1.2 gives
a flavour of the library facilities.

Table 1.2. Pseudo-code for modeling and evaluating the communication cost
the Wave2D kernel using the -Lop library.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

int P = 8;
int nodes = {0, 1, 0, 1, 0, 1, 1, 1}; // Node mapping
Process *p[P];
int *[P]
for rank in {0, P-1}:
p[rank] = new Process (rank, nodes[rank]);
for rank in {0, P-1}:
[rank] = new Neighbors (p);
TauLopConcurrent *conc = new TauLopConcurrent ();
for rank in {0, P-1}:
TauLopSequence *seq = new TauLopSequence ();
for dst in {[rank]}:
m = getMsgSize (p, dst) * sizeof(double);
seq->add (new Transmission (p[rank], p[dst], m));
conc->add(seq);
TauLopCost *tc = new TauLopCost ();
conc->evaluate (tc);
double t = tc->getTime ();

Line 2 represents the mapping of processes to nodes, numbered 0 and 1,
a subset of the process deployment π. Lines 3-8 create the array of
processes, represented by a rank number and its mapping node, and its
neighbours (rank). Neighbors() function returns different values for each
data mapping, so the code is data mapping independent. For instance, in

Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

31

Fig. 1.6, neighbours of process p5 change from 5 {0,1,2}  to
'
5 {0,3,7}  . Note that the number of data points in its boundaries for

transmitting through the network to processes in 5 is 76. However, this
number reduces to 40 in '

5 . Lines 9-15 compose the cost expression,
using the TauLopConcurrent and TauLopSequence objects. All
Transmissions added to a TauLopSequence object will be evaluated
under the assumption that they progress sequentially. In the other hand,
all TauLopSequence objects added to a TauLopConcurrent object will
be evaluated under the assumption that they progress concurrently,
applying the transfer time parameter values for specific m and . Note
that all transmissions from the same process are stored in a
TauLopSequence object, while transmissions from different processes
are concurrent, and hence stored in a TauLopConcurrent object,
according to the communication modeling. Each transmission is carried
out between two Processes and its size is specified in bytes. The
communication channel used for each transmission is internally figured
out from the node location obtained from the processes. Finally, lines
16-18 evaluate the cost expression stored in variable conc returning a
TauLopCost value, which contain the time in seconds.

For evaluating a cost expression, the parameters of the model must be
previously provided to the library. Fig. 1.7 shows the functional scheme
of the -Lop toolbox. In a typical optimization procedure, inputs are
1) The mapping of process to node; 2) The data mapping object of
optimization d, and 3) The parameters of the model built for the target
platform. The output is a new data mapping d' which minimizes the
communication cost.

1.5. Conclusions

This chapter presents an optimization methodology for MPI-based data
parallel applications running on complex heterogeneous platforms, with
a focus in the optimization of their communication cost. The key benefit
of this methodology is that allow engineers and developers to off-line
analyze and estimate the cost of the communication costs with a good
level of accuracy, and even more important, without wasting time and
resources in the design, implementation and execution of tests for trying
to figure out an optimal configuration of the application.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

32

Fig. 1.7. Functional scheme of the -Lop toolbox.

The methodology is presented through several examples, which use two
tools freely available, FuPerMod and -Lop. FuPerMod is an
environment that includes the utilities to benchmarking process speeds,
that is, the computation capabilities of the processes running the
application. Based on its relative speed results, FuPerMod outputs a data
mapping of unevenly sized regions, ensuring that the workload is
balanced between target processing units of uneven capabilities, as are
the current multi-core nodes and their attached accelerators.

-Lop is an analytical model with a high level of expressivity and
accuracy that allows modeling and evaluating the cost of
communications performed by numerical kernels and other applications
running on heterogeneous platforms. The main characteristics of -Lop
are, first, the capability of capturing the bandwidth shrink experimented
by a communication channel when several transmissions progress in it
concurrently and, second, capturing the influence of the process-to-node
mapping, which determines the channels used to transmit data, both with
a critical influence on the overall communication cost of an application.

Chapter 1. A Methodology for Performance Optimization of Data Parallel Applications
on Heterogeneous Computing Platforms

33

In addition, the procedure of -Lop parameters estimation is described.
Such procedure put the focus on the accuracy in the estimation of
parameters, a key challenge to improve the accuracy in the estimations
performed by the model.

In our methodology, -Lop departs from the data mapping returned by
FuPerMod. Armed with a procedure that automates the process of
evaluating large and complex communication cost expressions, the
programmer enters into a new scenario where she can devise new
strategies to search for new data mappings, with better or even optimal
communication costs. Taking as inputs the initial data mapping, the
process-to-node mapping and the parameters of the model, we have
shown that simple code upon the -Lop library primitives which can
quickly evaluate large data mapping domains, and essential help to
further developing optimization strategies and heuristics.

Acknowledgements

This work was supported by the European Regional Development Fund
'A way to achieve Europe' (ERDF) and the Extremadura Local
Government (Ref. IB16118).

References

[1]. MPI Forum, MPI: A Message-Passing Interface Standard, University of
Tennessee, 1994.

[2]. University of Extremadura. HPC Group Web Page,
http://hpc.unex.es/taulop

[3]. J. Dongarra, A. L. Lastovetsky, High Performance Heterogeneous
Computing, Wiley-Interscience, New York, NY, USA, 2009.

[4]. A. Lastovetsky, R. Reddy, Data partitioning with a functional performance
model of heterogeneous processors, Int. J. High Perf. Comput. Appl.,
Vol. 21, No. 1, 2007, pp. 76-90.

[5]. D. Clarke, Z. Zhong, V. Rychkov, A. Lastovetsky, FuPerMod: A software
tool for the optimization of data-parallel applications on heterogeneous
platforms, The Journal of Supercomputing, Vol. 69, 2014, pp. 61-69.

[6]. O. Beaumont, V. Boudet, A. Petitet, F. Rastello, Y. Robert, A proposal for
a heterogeneous cluster ScaLAPACK (dense linear solvers), IEEE
Transactions on Computers, Vol. 50, Issue 10, 2001, pp. 1052-1070.

[7]. J. A. Rico-Gallego, J. C. Díaz-Martín, τ–lop: Modeling performance of
shared memory MPI, Parallel Computing, Vol. 46, 2015, pp. 14-31.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

34

[8]. J. A. Rico-Gallego, J. C. Díaz-Martín, A. L. Lastovetsky, Extending τ–lop
to model concurrent MPI communications in multicore clusters, Future
Generation Computer Systems, Vol. 61, 2016, pp. 66-82.

[9]. J. A. Rico-Gallego, A. L. Lastovetsky, J. C. Díaz-Martín, Model-based
estimation of the communication cost of hybrid data-parallel applications
on heterogeneous clusters, IEEE Trans. on Parallel and Distributed
Systems, Vol. 28, Issue 11, 2017, pp. 3215-3228.

[10]. T. Malik, V. Rychkov, A. Lastovetsky, Network-aware optimization of
communications for parallel matrix multiplication on hierarchical HPC
platforms, Concurrency and Computation: Practice and Experience,
Vol. 28, 2016, pp. 802-821.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

35

Chapter 2

An XPath Query Aggregation Approach
for XML Publish/Subscribe Systems

Yang Cao, Chung-Horng Lung and Shikharesh Majumdar2

2.1. Introduction

Extensible Markup Language (XML) [1] is a standard for data exchange
and representation among heterogeneous systems. XML has been
applied to various applications, e.g., network management [2, 3] and
cloud configuration management [4, 5]. An XML-based approach can
bring advantages in the construction of models for data representation,
information exchange among the agents of the grid [6]. XML
publish/subscribe (pub/sub) systems are also XML applications. In a
pub/sub system, subscribers specify their interests (called subscriptions
or queries) and demand a particular subset of publication messages on
the system. The terms subscription and query are used interchangeably
in this work. The content producers, also called publishers, deliver
publication messages to subscribers through content providers which
mostly also provide network services to identify the registered
subscribers and correctly deliver publication messages to subscribers.

The operations of XML pub/sub systems are often carried out using an
application-layer service that consists of specific brokers for delivering
XML publication messages and managing subscriber queries. In an
XML pub/sub system, subscriptions are represented by XPath queries
[7], whereas publication messages are in the form of XML documents.
One of the main challenges for an XML pub/sub system is to efficiently
manage a large number of subscriptions. Therefore, query aggregation
becomes a crucial technique in dealing with the challenge of a very large
subscription space. But the query containment problem [8, 9], a part of

Yang Cao
Department of Systems and Computer Engineering, Carleton University, Ottawa,
Canada

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

36

query aggregation, is different from the XML document matching
problem [10-12]. XPath query aggregation can reduce the size of the
query tree that is stored at each XML broker and can reduce the
processing time for matching a publication message with queries stored
in the query tree. This has a significant impact on the publication
message delivery time to interested subscribers.

XPath query aggregation algorithms are based on traversing of the query
tree node by node in order to capture the containment relationship
between a new query and the existing query tree [13-16]. A node in an
XML message can be an element node, an attribute node or a text node,
etc. On the other hand, a node in an XPath query q can be a location step
of q. The first issue with these existing approaches is that a node by node
comparison on trees is time consuming, especially for
ancestor/descendant relationships or for complex and deep XML data.
Secondly, the operation needs to be performed at each broker along the
message delivery path using the application-layer multicast model.

To mitigate the problem of the expensive tree traversal operation, node
labeling or indexing schemes, e.g., [17-20], have been proposed for
efficient processing of XML data having a deep hierarchical and
complex structure. These schemes can be used to proficiently determine
the ancestor/descendant or the parent/child structural relationship
between two nodes, which is efficient for highly-nested XML data. With
the interval-based labeling scheme, a node n in the query tree is
represented by an interval [a:b] label, where each label represents a range
or region from a to b, and a is the pre-order value for the node n and b is
the number that is larger than all of a’s descendants. The labels determine
structural relationships between two nodes by comparing the covering
intervals for two node labels. The region code scheme [21] is an
interval-based labeling scheme that assigns left, right, and level position
numbers to each node in a tree. Instead of traversing the query tree node
by node, using the region code scheme can improve the performance by
quickly identifying ancestor/descendant and parent/child structural
relationships. The region code scheme has been adopted in TwigStack
[21] to identify the matching between twig queries (queries with
branches) and the XML documents in XML database systems.

A great deal of research has been devoted to effective indexing schemes
for XML database systems. There are similarities between XML
database systems and XML pub/sub systems. XML query aggregation
plays a crucial role for the efficiency of XML pub/sub systems.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

37

Therefore, the objective of this chapter is to investigate an existing and
efficient indexing scheme (region code) in XML databases and adapt it
to XML pub/sub systems for query aggregation in order to improve the
efficiency of XML pub/sub systems.

This chapter presents a novel XPath query aggregation approach with the
application of region codes (see Section 2.3.1). Our approach supports a
rich subset of XPath query language grammars (XP) that are frequently
used in real-life applications: the parent/child operator (/), the
ancestor/descendant operator (//), and the predicate operator ([]). Our
proposed approach consists of two primary algorithms: containee and
container. The containee algorithm is used to identify the set of queries
in an existing query tree that are contained within a new user query. The
container algorithm, on the other hand, is used to identify the set of
queries in the existing query tree that covers the new user query. With
the proposed query aggregation approach, new queries can be efficiently
merged with the existing query tree. The query tree size at each broker
can be reduced or confined, which in turn can decrease the time for XML
message filtering which is required in identifying interested subscribers.
Our algorithm may also be used in other XML applications that have to
deal with a large number of XPath expressions.

A preliminary study of XPath query aggregation with region code was
presented and simple examples were used in [22] to demonstrate the
feasibility of region code. In comparison to [22], this chapter presents
other related algorithms and explains those algorithms in much more
detail. Specifically, significant extensions to the algorithm in terms of
building region code, maintaining a global query index tree, and an
analysis of the time/space complexity of the algorithms are included.
Moreover, performance analysis for those extensions has been
conducted. The primary contributions of this chapter include:

 An extension of the region coding scheme to query aggregation for
XML pub/sub systems, including both the containee and container
algorithms, that is used to determine the containment relationship of
a new query and the existing aggregated queries. In our containee
algorithm, the source tree is the new query and the target tree is the
existing query set. On the other hand, in our container algorithm, the
source tree is the existing query set and the target tree is the new
query. In addition, we refine the containee algorithm in [22] to handle
more complex cases between a parent node and a child node.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

38

 The proposed approach processes an XPath query as an individual
entity in a bottom-up fashion and uses a chain of linked stacks to
represent partial matching results for root-to-leaf query paths. The
benefit of this approach is that there is no need to split a
tree-structured query into a set of single paths. Therefore,
post-processing for branch node matching is removed in this
approach, which results in higher system performance.

 A thorough experimentation for performance comparison of the
proposed query aggregation scheme and an existing well-known
query aggregation method XSearch has been conducted. We compare
varying number of parameters and metrics between two approaches,
i.e., processing time for varying number of queries (up to
100,000 queries), parsing time for XPath queries, building time for
global query tree, building time for region code and label lists, and
space usage analysis.

The rest of this chapter is structured as follows. Related work is
presented in Section 2.2. The proposed approach is described in
Section 2.3 and the performance evaluation is presented in Section 2.4.
Section 2.5 presents our conclusions.

2.2. Related Work

This section first describes the primary components for XML pub/sub
systems in Section 2.2.1, including the major differences between the
XML query aggregation and XML filtering operation. Then,
Section 2.2.2 highlights query containment and homomorphism, two
crucial operations for query aggregation, including a summary of
existing approaches and their limitations. Some approaches that can
improve the performance of query aggregation are then discussed in
Section 2.2.3. Finally, Section 2.2.4 describes two closely related
techniques, XSearch and TwigStack, in more details.

2.2.1. Main Functional Components for XML Pub/Sub
Systems

An XML pub/sub system matches publisher’s XML messages (or simply
messages) against a large number of user subscriptions and delivers
messages to matched subscribers across the network. The most common
model for XML pub/sub systems is the overlay model in which a set of

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

39

application-layer XML-capable brokers are deployed and managed by
content providers to support the service. XML pub/sub systems have
three main functional components: filtering of XML publication
messages from the publishers, delivery of XML publication messages
across the network to matched subscribers, and aggregation of XPath
queries submitted by subscribers at specific XML brokers.

XML filtering and matching algorithms have been studied extensively,
e.g., [15, 23, 10, 24, 11, 12, 25-31]. The primary task of an XML filtering
and matching technique is to identify the registered subscribers for an
XML message or XML document published by a content provider. When
an XML broker receives an XML publication message (also called XML
document), the XML filtering engine matches the arriving XML
document with user XPath queries to determine the matched queries.
Yfilter [12] is a well-known XML filtering and matching technique and
has been widely studied in the literature and used in practice. Various
XML message delivery protocols have been reported in [13, 14, 32-38].
The application-layer multicast model for XML delivery is the most
commonly used approach to reduce the number of delivery messages
from the publisher to subscribers [12].

This chapter focuses on XPath query aggregation. XPath query
aggregation deals with a different problem in comparison to that handled
by XML filtering and matching techniques. XML query aggregation
deals with grouping of related user queries and management of the
aggregated query tree. The main objective of query aggregation is to
identify the containment relationship for a new query and existing
queries and merge the new query with the existing queries. Hence,
identifying the location to insert the new query into the query tree is
essential for query aggregation. The efficiency of the XML query
aggregation operation is critical for the overall performance of the X
systems, because the number of XPath queries can be very large and an
XML query tree can be highly-nested and contain complex operators,
e.g., *, //, and value predicates. Effective XPath query aggregation can
reduce the number of queries to be filtered [13-16, 32, 33, 39, 40, 8, 41].
Further, the query aggregation operation is performed at each
application-layer XML broker used in a commonly used overlay
multicast model [23, 10, 12, 26-31]. Therefore, effective query
aggregation is critically important for the overall system performance.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

40

2.2.2. XML Query Containment and Homomorphism

XML query containment Identifying the containment relationship
between a query and an existing set of queries is a key function in query
aggregation. The XPath containment relationship is defined as follows
[40, 8, 41]:

Definition 1: “For two XPath subscriptions p and q and an XML
document t, a containment (partial order) holds if every XML document
t that matches p also matches q (denoted p ⊆ q).”

The complexity of XPath query containment is discussed in [40, 42].
Miklau and Suciu [40] proved that the containment problem for any
combination of two operators in the set of {*, //, []} has a complexity of
PTIME. For XPath containing * and // operators (represented by
XP ∗, //), the containment problem is equivalent to the string matching
problem; for XP [], //, there is a polynomial time containment algorithm;
for XP [], ∗, a polynomial time containment algorithm follows from classic
results on acyclic conjunctive queries. Miklau and Suciu also prove the
containment problem of XP [], ∗, /, // queries are co-NP complete. In [42],
Wood studied the problem of XPath query containment under Document
Type Definition (DTD) constraints and showed that the containment
problem could be decided in polynomial time. In [41], Neven et al.
discussed the complexity of the containment of various types of XPath
queries in the presence of disjunction, DTDs and variables. The
complexity of almost all decidable XPath queries lies between co-NP
and EXPTIME. Although the complexity is high, the size of XPath
expressions is rather small [41].

Homomorphism Given two XPath subscriptions p and q, in order to
check containment p ⊆ q, the exhaustive approach of checking
p(t) → q(t), meaning if p(t) is covered by q(t) for all XML trees t, is not
practical because the number of comparisons can be an exponential
function of the number of trees t. Practical techniques for checking query
containment are based on: canonical model, homomorphism, automata,
and chase [40]. All these techniques use a simple fact that p ⊄ q if there
is a counter-example, i.e., a tree t such that t contains p but t cannot
contain q [8]. A canonical model restricts the search space to canonical
trees with a similar shape to a pattern p. Homomorphism finds a
homomorphism from p to q. The automata-based technique constructs
two tree automata and checks containment between the languages

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

41

defined by the automata [8]. The chase technique translates the XPath
queries into relational queries and uses the relational chase method. The
definition of homomorphism is presented as follows [40]:

Definition 2: A homomorphism is a function h: nodes(p′) → nodes(p)
between two patterns p′ and p. A homomorphism should satisfy the
following conditions:

 h(root(p′)) = root(p);

 For each x ∈ node(p′), label(x) = * or label(x) = label(h(x)).

For each x, y ∈ node(p), if (x, y) is a child edge in p′, then (h(x), h(y))
must be a child edge in p; if (x, y) is a descendant edge in p′, then
(h(x), h(y)) must be a path in p of length ≥ 0, which may include child
edges and/or descendant edges. The length of a path here is defined to be
the number of intermediate nodes between x and y. For example, if
(h(x), h(y)) is a path of length 0, then h(x) is the parent of h(y).

Homomorphism involves both a label match and an edge match. In
XML, an edge can be either a child edge or a descendant edge. A child
edge exists between two nodes x and y if and only if x and y have a
parent-child relationship. A descendant edge exists between two nodes x
and y if and only if x and y have an ancestor-descendant relationship.

Homomorphism is a sufficient but not necessary condition for
containment. Homomorphism cannot identify the complete answer for
containment among XPath subscriptions. The exception case is that two
subscriptions have a containment relationship but do not have a
homomorphism relationship. If two queries have a containment
relationship but do not have a homomorphism relationship, then an XML
pub/sub system would forward unnecessary messages for query routing.
However, this would not affect the system correctness. A
homomorphism between two XPath queries can be found in polynomial
time and the time complexity for checking the existence of a
homomorphism from p′ to p is O (|p|2|p′|) [40]. Fig. 2.1 shows a simple
example for containment and homomorphism. In this example, there is a
homomorphism between query p′ and p and also p ⊆ p′.

The concept of homomorphism has been adopted by several researchers
for XPath query aggregation. Chand et al. [13, 11] designed an XPath
query aggregation algorithm, called XSearch. XSearch builds a

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

42

factorization tree to share common prefixes among queries.
Homomorphism mapping is used to identify the containment
relationship between the new query and the existing queries. Yoo et al.
[14] proposed another XPath query aggregation algorithm. Twig
(tree-structured) queries are decomposed into a set of paths/branches. A
query index tree is built and share common prefixes among query
paths/branches. Homomorphism mapping between branches is then
validated. Li et al. [15] proposed an XPath query aggregation algorithm
that splits a twig query into paths/branches and performs a containment
check for paths/branches. Homomorphism is used to identify the
containment relationship. Fu and Zhang [16] presented an
automata-based algorithm to check the containment relationship between
XPath queries. Homomorphism is determined through running automata
with an input new query. This algorithm can only identify which existing
queries are covered by a new query. Placek et al. [43] propose a heuristic
approach for checking containment of partial tree-pattern queries. The
approach allows either keyword-style queries with no structure or strictly
tree-structured query specified with XPath.

Fig. 2.1. A simple example for containment and homomorphism.

But existing approaches to containment and homomorphism have some
limitations. First, Fig. 2.2 shows a simple example for containment and
homomorphism to depict the inefficiency of the tree traversal algorithm
in general. To find a match for node //b in the sample new query /a//b,
six comparisons are required, namely x, m, n, o, p, and b. The
inefficiency becomes worse for ancestor/descendant operators (//)
because all the descendant nodes under the current node need to be
compared at least one time. Hence, in the case of a large number of
queries, the tree traversal-based approaches can be time-consuming.
There are issues with other approaches mentioned in the previous
paragraphs. Yoo et al. [14] decomposed twig queries into
paths/branches. Due to the separation of paths and branches, an extra

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

43

post-processing operation for branching points is needed to remove false
positives. The approach proposed by Li et al. [15] needs to perform a
containment check for paths/branches after splitting twig queries into
paths and branches. One issue with this approach is that the branch
information is lost. In [16], no solution is provided on how to find
whether existing queries can cover the new query. And the heuristic
proposed in [43] is incomplete [22]. The heuristic approach checks the
containment of Q into Q1 by checking the existence of a homomorphism
from Q1 to Qa which is equivalent to Q. If there is a homomorphism from
Q1 to Qa, then Q ⊆ Q1, however, it is possible that Q ⊆ Q1 but there is
no homomorphism from Q1 to Qa.

Fig. 2.2. An example showing a problem with existing aggregation algorithms.

On the other hand, this chapter investigates XPath user query
aggregation that is more complex than simply identifying the
homomorphism and containment relationship or matching patterns
between a XML query and an XML publication document [44]. When a
new user query arrives, two key functions are required in query
aggregation to determine: (i) the set of queries in an existing query tree
that are contained by the new user query, and (ii) the set of queries in the
existing query tree that covers the new user query. In other words, the
covering relationship may need to be performed for two directions
between a new query and an existing query tree consisting of a number
of queries. The former is called the containee algorithm; the latter, the
container algorithm. Both algorithms will be described in detail in
Section 2.3. Furthermore, the new user query needs to be merged with
the existing query with the aggregation operation. The merge operation
needs to use the exact position to insert the new user query into the
existing query tree and the subsequent management of the query tree.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

44

2.2.3. Node Labeling or Indexing Schemes for XML Database
Queries

As a result of increasing popularity of XML data, a number of
researchers have investigated XML database systems when XML data
becomes popular. One of the primary challenges of XML database
systems is to effectively manage semi-structured XML data. To mitigate
the problem of inefficiency caused by tree traversal operation, node
labeling or node indexing schemes have been proposed for efficient
processing of XML data. The research efforts in labeling and indexing
schemes focus on XML databases operations, such as XML query
processing, keyword queries for XML search, XML tree comparison for
heterogeneous databases, etc.

Node labeling schemes, such as the interval-based labeling scheme
[17, 18], the prefix labeling scheme [19], the prime number labeling
scheme [20], the dynamic labeling scheme [45] for managing label
changes, the keyword query with a structure approach for XML search
[46], the min-label tree scheme for XML search and identifying similar
XML tree for heterogeneous databases [47], have been discussed in the
literature for processing XML database operations efficiently. The labels
can be used to quickly determine the ancestor/descendant or parent/child
structural relationship between two nodes for various XML
database applications.

Similarly, various indexing schemes have been reported to increase
efficiency in locating a particular element in a tree-centric data model
without schema. Indexing techniques can be used for locating node
names, values, and paths [48]. Some example indexing schemes include
entry-point algorithm (EPA) and two-point entry algorithms [48], XML
keyword search [49], and a compacted indexing scheme [50].

Efficient labeling or indexing schemes are particularly useful for
complex and highly-nested data often exist in XML. Those techniques
are mostly proposed for efficient XML database operations, e.g., query
processing, rather than XML subscription aggregation in a pub/sub
system. Although the main objective of XML database systems is
different from XML pub/sub systems, the rich set of techniques
developed in XML database systems provide valuable information and
some can be adapted for XML pub/sub systems.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

45

Region code The region code scheme [21] is based on the interval-based
labeling scheme that assigns left, right, and level position numbers to
each node in a tree. Numbers can be processed faster than text data. The
left label, a, is the pre-order value for the node n and the right label, b, is
a number that is larger than all of a’s descendants. The labels determine
structural relationships between two nodes by comparing the covering
intervals for two node labels. The level is the depth of a node from the
root node. We discuss the region code scheme in detail in Section 2.3.

2.2.4. XSearch and TwigStack

The XSearch algorithm [11, 13] is chosen for performance comparison
in this chapter, because it is well-known, efficient, and explicitly
proposed for XML query aggregation. The XSearch algorithm shares
common prefixes with different XPath queries and treats a twig query as
a unit without a branch split. There is no post-processing operation;
however, the XSearch algorithm maps a //-node to two paths. One path
is an empty chain of nodes, and the other path is a non-empty chain. If
the number of // nodes is large, the number of comparisons is
proportional to O(|s| × |T (R)|), where |s| is the number of nodes in the
new query to be aggregated and |T (R)| is the number of nodes in the
factorization tree [13]. In comparison to XSearch, the syntax described
in this work supports /, //, and [] (predicate) XML operators. Currently,
our implementation does not include the use of the *-operator.
Section 2.3.1 describes another key difference between XSearch and our
proposed approach.

The TwigStack algorithm [21] is a holistic approach for matching twig
queries with XML documents stored in a database, not for XML query
aggregation in XML pub/sub systems, which is a focus in this chapter.
TwigStack uses a region encoding scheme to represent each node
position (left, right, level) within an XML document. The TwigStack
algorithm treats an XPath twig query as a unit. It is an optimal algorithm
for computing ancestor/descendant (//) relationships, an important and
common feature of XML documents, present in an XPath query [21].
Although TwigStack is efficient in determining the ancestor/descendant
relationship, it has not been used for XML query aggregation or XML
pub/sub systems yet. The high efficiency of TwigStack motivates us to
adopt the region code for XML query aggregation as efficient
management of queries which can significantly improve the performance
of XML pub/sub systems. We adapt the approach to encode nodes in a

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

46

subscriber’s query index tree first, then compute the aggregated answers
for containee and container operations based on region code
representations, instead of navigation on a tree. As a result, our proposed
approach becomes more efficient in comparison to the existing
aggregation methods.

In summary, the differences between our approach and TwigStack
[21] are:

 The target problem is different. Our containee algorithm is used to
determine the containment relationship of a new query and a set of
existing queries, including the position information of nodes, while
the TwigStack algorithm determines if there is a match between an
XPath query and an XML publication document.

 Our approach consists of both the containee and the container
algorithms, but the TwigStack cannot handle the container operation.

 No merge-join step is used in the proposed containee algorithm,
because the matched query ids are the expected computing result and
there is no need to enumerate the matched nodes results. As a result,
the post-processing operation used in TwigStack is no longer needed,
which furtherly improves the performance of our proposed XPath
query aggregation approach.

 The TwigStack algorithm is used to compare one XPath query and
one XML document, whereas our containee algorithm is used to
identify the correct set of matched queries from multiple XPath
queries.

2.3. Our XPath Query Aggregation Approach Using
Region Encoding Scheme

This section presents a new aggregation approach for XPath queries. The
aim of the aggregation operation is to add a new incoming subscriber
query to an existing query tree that has already been stored at an XML
pub/sub broker. In order to support the aggregation operation, it is
required to identify the relationship between the new query and existing
queries. In other words, we need to check if: (i) The new query covers
some existing queries, (ii) The new query is covered by exiting queries,
or (iii) Neither of two scenarios. In addition, another requirement is to
identify where to add the new query into the existing query tree.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

47

Our approach adopts region code [21] to efficiently locate query nodes
in the existing query tree and adapts the technique for XML pub/sub
query aggregation to address the four aforementioned requirements. Our
query aggregation approach has three parts. The first is to create a global
query index tree, in which each node is assigned a region code (left, right,
level). The region code represents the positional information of the node
(see Section 2.3.1). The second and third parts are the new containee and
container algorithms, respectively (see Sections 2.3.2 and 2.3.3). The
containee algorithm identifies the set of queries in a global tree that are
contained within the new incoming query. The container algorithm, on
the other hand, identifies the set of queries in the global tree that cover
the new query.

2.3.1. Global Query Tree, Region Node Coding and the Data
Structures

This section first describes global query index tree which is followed by
a description of region code and how the code is generated.

The proposed query aggregation approach operates on a global query tree
which is the same as the XSearch algorithm [21]. A global query tree is
a compact representation of a set of XPath queries and enables the prefix
sharing between XPath queries. Fig. 2.3 depicts an example of four
XPath queries (q1–q4) and the corresponding global query tree with
region code. Each node n of a global query tree has a node label (e.g.,
node a under the Root) and a set of query ids sub(n) (e.g., {1, 2, 3, 4} for
node a). The process of adding a new query into the global query tree is
performed in a top-down fashion. For a node u with subscription id s in
a new query to be added to the tree, the algorithm needs to find a node n
in the global query tree with the same label as u such that s is not a
member of sub(n). If there is an existing child already in the tree, then
add s to sub(n). Otherwise, a new node n is created and s is added to
sub(n). The addition process of the subtree rooted at u in the new query
continues recursively. Details can be found in [21].

As stated, a region code example is shown in Fig. 2.3. Region encoding
[21] is performed through a pre-order traversal of the tree. Each node n
in the global query tree is associated with a tuple (sub(n), [left: right],
level). The first term, sub(n), represents the set of query ids which share
node n. The value of the left attribute is the number given to a tree node
in a pre-order traversal of the tree. The value of the right attribute is the

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

48

number given to the tree node after its children are recursively traversed
from left to right. If the node is a leaf, the value of its right attribute is
equal to its left value plus 1. The left attribute denotes the left position of
n in the global query index tree; the right attribute is the value of the right
position of n in the tree; and the level is the depth of node n as measured
from the root node.

Fig. 2.3. An existing global query tree example.

The region code can determine the ancestor/descendant and parent/child
relationships. For instance, consider two nodes n1 and n2, where n1 with
region code ([l1: r1], d1) and n2 with region code ([l2: r2], d2). The
structural relationship between these two nodes n1 and n2 can be
determined by:

 n1 and n2 have an ancestor/descendant relationship if and only if l1 <l2
and r1>r2;

 n1 and n2 have a parent/child relationship if and only if l1 <l2, r1 >r2
and d2=d1+1.

Fig. 2.3 is the resulting tree for queries q1, q2, q3, and q4 which are shown
at the top left corner of the figure. Superscripts on node labels are used
when the same label appears multiple times: a labeli signifies the ith
occurrence of the label. In Fig. 2.3, consider node a1 with region code
([2:21],1) and node //b1 with region code ([3:10],2). Node a1 and node
//b1 satisfy the parent/child relationship. Furthermore, for node a1 with
region code ([2:21],1) and node c1 with region code ([8:9],3), node a1

e1

({2,4},[4:5], 3)

Root(#)

a1

({1,2,3,4}, [2:21],1)

//b1

({1,2,3,4},[3:10], 2)
//c2

({2},[11:12], 2)
//b2

({3},[13:16], 2)
//b3

({3},[17:20], 2)

d1

({3,4},[6:7], 3)
c1

({4},[8:9], 3)
e2

({3},[14:15], 3)
c3

({3},[18:19], 3)

Global query tree
A given set of Xpath queries:

q1 = /a//b
q2 = /a[.//c]//b/e
q3 = /a[.//b/d][.//b/e]//b/c
q4 = /a//b[d][e][c]

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

49

and node c1 satisfy the ancestor/descendant relationship. However, node
//b1 with region code ([3:10],2) and node c2 with region code ([11:12],2)
do not satisfy either relationship.

The steps for generating the region code are presented in Algorithm 2.1,
where n is the current working node in the global query tree, num is the
sequence number generated using pre-order traversal, num is an integer
number, and level is the level of n in the global query tree. The output of
Algorithm 2.1 is that each node under node n has its own region code.

Algorithm 2.1. generateRegionCode(n, num, level).

The primary notations and data structures used in the algorithms are
described next. Let q be a general term that refers to any node in a new
query. The function q.getChildren() returns all children nodes of q. For
example, a1.getChildren() is the list {//b1, //c2, //b2, //b3} in Fig. 2.3. The
function q.sub() returns all the query ids associated with node q. For
example, a1.sub() returns a list of {q1, q2, q3, q4}. Next, combined data
structures including a hash table and label lists are used to store all region
code instances. The hash table can quickly find a region code list based
on node labels. A label list is a sorted region codes list for nodes sharing
identical node labels. For example, Fig. 2.4 shows a set of five label lists
for the global query index tree shown in Fig. 2.3.

Fig. 2.4. Label lists for the global query index tree in Fig. 2.3.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

50

Further, there is a stack associated with a label list for each node q,
denoted as Sq, as shown in Fig. 2.5. We can access nodes in a global
query tree from label lists. Stacks temporarily hold nodes that we have
seen and match a new query node but not all its subtree have been
processed. Each stack associated with q (e.g., Sq) has a pointer to the
stack of the parent node of q. For each q, there is a pointer pointing to an
entry in the corresponding label list of q, denoted as Cq. The attributes of
a region code can be accessed by Cq → left, Cq → right and Cq → level.
For example, for node //b in the new query, the pointer associated with
node //b is represented as Cb and //b has a label list {b1, b2, b3} as shown
in Fig. 2.5b. If Cb points to b1 in the label list, then b1.left is 3, b1.right is
10 and b1.level is 2, as depicted in Fig. 2.4.

(a) An example of the combined data structures associated with a new query
node q

(b) An example of the data structures for the new query tree

Fig. 2.5. The data structures associated with a new XPath query.

q1, q2, q3, ...

Cq

Stack Sq associated with node q:

Pointer

Label list associated with node q

Pointer to parent
stack of node q...

New query Q: /a[.//b/e]//b[c][d]

/.

a

//b //b

c d e

Sa

Sb1

Sc Sd

Sb2

Se

a1

Ca

b1, b2, b3

Cb1

c1, c2, c3
Cc

d1

Cd

e1, e2

Ce

b1, b2, b3

Cb2

...

...

...

...

...
...

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

51

Matched elements of node q are pushed onto Sq. Each element in Sq has
a pointer pointing to the corresponding parent element stored in the stack
for the parent of q (Sq.parent). Stacks encode the matched elements during
the comparing process in a compact way. For instance, for a branch node,
only one copy of the matched element of node q needs to be stored,
instead of multiple copies of the matched elements for multiple branches.

The process of adding a new query into a global query index tree is
explained as follows. Consider q as a query node in a new query to be
added to the global query tree, id as the query id associated with q, and
node n as a node in a global query tree. Algorithm 2.2 presents the
process of adding an XPath query node to the query index tree.
Algorithm 2.3 illustrates the steps for removing an XPath query based
on id when a query is unsubscribed. Fig. 2.3 depicts an example of the
global query index tree created using Algorithm 2.2.

Algorithm 2.2. addQuery(q, id).

Algorithm 2.3. removeQuery(id).

2.3.2. Containee Algorithm of the New Approach

This section presents the containee algorithm, which can identify a
subset of existing queries contained by a new incoming query. Fig. 2.6
shows the concept of finding the existing queries (captured in the global

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

52

query tree on the right) which are contained or covered by the new query
Q: /a [. //b/e]//b[c, d] (the small tree on the left). The idea is to determine
whether every node of Q can be mapped to nodes of the global query
tree. In addition, parent/child relationships and ancestor/descendant
relationships among nodes in the global query tree need be consistent
with Q. For example, in Fig. 2.6, both mapped nodes and their structures
of /a//b/e of Q are marked in a hatched pattern and the mapped nodes of
/a//b[c, d] are marked in shaded pattern. The leftmost node //b1 in the
global query tree (on the right) is in both the hatched pattern and the
shaded pattern areas.

Fig. 2.6. The concept of a containee algorithm.

The containee operation is presented in Algorithm 2.4 to Algorithm 2.8.
It operates on the label lists which store region code instances for nodes
in the global query tree, instead of operating on the global tree directly.
Fig. 2.4 shows an example of label lists for the global query tree as shown
in Fig. 2.3. As a result, our proposed containee algorithm is more
efficient, as only the label lists that are associated with the new query are
traversed, which has a smaller number of nodes than that of the entire
global query tree.

Algorithm 2.4 is an adaptation of the TwigStack algorithm [21]. Q is a
new query and Algorithm 2.4 is to identify the set of queries in the global
query tree that are contained by Q. It associates a stack Sq and a label list
Tq with each node q of Q. The stack keeps track of matched nodes from
the global query tree.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

53

Algorithm 2.4. containee(q) algorithm.

Algorithm 2.5. getNext(q) definition.

Algorithm 2.6. cleanStack(value) definition.

Algorithm 2.7. computeSubResult() definition.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

54

Algorithm 2.8. isEndOf(q) definition.

Algorithm 2.4 is a bottom-up process which searches all potential
solutions guaranteed to join the final results. If a leaf node of the new
query is met, the algorithm outputs the solution currently in stack from
the root node to the leaf node, stores the solution at the leaf node and fills
the match query id to the nearest branch node. The matchSet for each
node is an Arraylist that holds the id information for queries in the global
query tree covered by the corresponding query node of the new query.
The curNode node is the next node to be processed in the new query
which is returned by the function getNext(q). Key functions used are
highlighted as follows:

 containee (q): computes the queries covered by the new query q;

 getNext(q): returns the highest possible node in the new query tree
which may have a mapping node in the global query tree;

 cleanStack (value): pops unsatisfied elements from stack whose right
positions (region values) are smaller than the input value. If the right
position value is smaller than the current value, there is no
parent/child relationship. If the stack of a descendant node is not
empty, the stack will be cleaned;

 computeSubResult(): returns the matchSet results for one branch;

 showSolutionFromStack (): outputs matching path elements from
stacks;

 recordPartialResNearestBranchNode(): writes the partial results to
the nearest branch node;

In Algorithm 2.4, lines 3-4 remove elements from the parent stack
Sparent(curNode) when the right value of their region code is smaller than the
left value of the region code for the current node CcurNode, because these

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

55

elements cannot be ancestors of CcurNode. (CcurNode points to the label list
of curNode.) Lines 6-7 clean ScurNode by popping elements in ScurNode
whose right value of the region code is smaller than the left value of the
region code for CcurNode being pushed onto ScurNode. Lines 9-11 call the
function showSolutionFromStacks() to check the parent/child operator
(/) from the leaf stack to the root stack. If the parent/child operator (/) is
satisfied, the sub-results are stored in the nearest branch node p.
Lines 15-17 remove remaining elements in stacks and add the
sub-results.

The function getNext(q), where q is the new query node, is a key method.
The output of this function is the next query node to be processed in q
which either all its subtree nodes have matched elements or a query node
that has a minimum left value in the associated label list. The containee
algorithm operates on stacks associated with query nodes identified by
the function of getNext(q) and outputs matching path elements via
showSolutionFromStack() when accessing a leaf node.

The function getNext(q) first process each child node q (lines 3-4). When
accessing a leaf node (recursion exit), getNext(q) returns q as a result
(lines 1-2). In the recursion segment, for a node q, if every child qi is
equal to the returned result from getNext(qi), we look for an element in
the label list associated with q, which is a common ancestor of all
matched children elements pointed by Cqi (line 12). Cqi is a pointer
associated with child node qi. If such a common ancestor element exists,
node q is returned; otherwise, the child node of q with the smallest left
value qmin is returned (line 14). The function arg min{Cqi → left} returns
the child node qi of q with the smallest left values; the function arg
max{Cqi → right} returns the child node qi of q with the biggest right
values (lines 9-10). The rule of being a common ancestor element holds
when Cq → left < Cqmin → left and Cq → right > Cqmax → left. Lines 7-8
handle the case where parent and child nodes have the same label, for
instance, a new query /a/b/b/c.

The function computeSubResult() finds query ids for queries covered by
the new query. It is called either when a node n of the new query is a
branch node and its matching element is being popped from its stack or
when end conditions of all its children are satisfied. A set intersection
computation is required (line 3 of Algorithm 2.7) to determine the match
set for node n. Sub-results for this node n are computed together (line 5
of Algorithm 2.7). This is one of the differences between our algorithm
and the TwigStack algorithm [21]. The final result of the set of ids for

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

56

queries which are contained by the new query is returned by the
containee algorithm as shown in Algorithm 2.4. An example showing
why intersection is used is explained in Fig. 2.7.

Fig. 2.7. An example of computeSubResult () for the new query Q.

The isEndof () method checks the end condition, computes the sub-result
for node q and cleans the stacks if all nodes of subtree(q) reach
the end condition.

In summary, the containee algorithm is a new aggregation approach that
uses region code to effectively evaluate ancestor/descendent or
parent/child relationships between query nodes. In addition, the label
lists for the global query index tree enable the algorithm to search only
the label lists associated with the new query, instead of searching the
whole query index tree, for higher efficiency. The XSearch algorithm
[13], on the other hand, has to search the complete query index tree and
map a //-node to paths of length = 0 and length ≥ 1.

When the running example query Q in Fig. 2.5b is matched against the
global query index tree containing four XPath queries in Fig. 2.3, there
are three matched path results.

 ([8:9],3) – ([3:10],2) – ([2:21],1) for path /a//b/c, and the resulting
query ids are {4};

 ([6:7],3) – ([3:10],2) – ([2:21],1) for path /a//b/d, and the resulting
query ids are {3,4};

 ([4:5],3)- ([3:10],2) – ([2:21],1) and ([14:15],3) – ([13:16],2) –
([2:21],1) for path /a//b/e and the resulting query ids are {2,3,4}.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

57

When ([3:10],2) is popped from stack Sb1, the computeSubResult()
function is called upon as shown in Fig. 2.7. Before the element ({4},
[8:9],3) in the stack Sc is popped, the sub-result (query id {4}) is recorded
at the nearest branch node //b of the leaf node c. Similarly, before the
element ({3,4}, [6:7],3) is removed from the stack Sd, the sub-result
(query ids {3,4}) is added at the nearest branch node //b of the leaf node
d. Since //b is a branch node in the new query Q and has two child nodes
c and d, an intersection is applied here to filter out unsatisfactory queries,
e.g., query q3. Query q3 (/a[.//b/d, .//b/e]//b/c) has node a as the branch
node, while query q4 (/a//b[d, e, c]) has node //b as the branch node. The
sub-result {4} ∩ {3, 4} = 4 is obtained. After ([4:5],3) is popped from
the stack Se, ([3:10],2) is popped from its stack and ([13:16], 2) is moved
to stack Sb2. After the solution ([14:15],3) – ([13:16],2) – ([2:21],1) is
found from stacks, ([14:15],3) is popped. For the query node b2 in Q,
since its child query node e has reached its end condition, the element
([13:16],2) is popped from stack Sb2. Then, the remaining element
([2:21],1) is popped from the stack Sa. Since node a is a root node and
also a branch node, the computeSubResult() is called for node a to
compute the intersection result: {2, 3, 4} ∩ {4} = {4}. The final answer
is {4}, that is, query q4 is covered by the new query Q.

A detailed issue is when to clean descendant elements before removing
current elements. Fig. 2.8 depicts such an example. In the global query
tree, there is a left body element with region code ({Q1-Q6}, [7:58],
2) and a right body element with region code ({Q1,Q3,Q5},[59:70], 2) at
the second level of the global query tree. In this example, the right body
element in the global query tree contains all elements specified in the
new query. So the right body element ({Q1,Q3,Q5}, [59:70], 2) can be put
in the stack of Sbody and the left body element ({Q1-Q6}, [7:58], 2) should
be popped from stack Sbody according to line 6 in Algorithm 4, because
the left body element has been processed and should be removed. At this
point, the matching nodes still exist in the stack for descendent nodes
body.content, hr, body.end and bibliography, e.g. ({Q2}, [40:43], 3),
({Q2}, [41:42], 4), ({Q2,Q5,Q6}, [14:23], 3), and ({Q2,Q5}, [15:16], 4).
To get the correct answer, when popping an element from the stack, the
algorithm maintains a rule that the stacks for all descendant nodes should
be empty because their ancestor element is to be popped off from the
stack. If they are not empty, the elements in the descendant stacks are
popped first, then computes the total of all sub-results for the current
node, which are an intersection of the results from its children, and passes
the result to the nearest ancestors of the current node. Lines 7 and 8 of
Algorithm 2.8 describe above step.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

58

Fig. 2.8. An example of parent node popped before child node
of the containee algorithm.

2.3.3. Container Algorithm of the New Approach

The aim of the container algorithm is to check if existing queries cover
the new incoming query. The steps of the container algorithm are
summarized as follows: first, identify queries in the global query tree that
do not cover the new query; second, compute the complement of those
identified queries to find the set of queries that cover the new query.
These operations of the container algorithm are conceptually similar to
operations performed in the XSearch algorithm.

Fig. 2.9 shows the data structure used by the container algorithm. To
compute the container result, nodes in the new query are encoded with
region code and indexed by a hash table based on node labels. The label
lists are sorted on left values of region code instances. Each node n in the
global query tree is associated with a label list from the new query. For
each node n in the global query tree, there is a pointer pointing to an entry
in the corresponding label list of n, denoted as Cn. The attributes of a
region code instance can be accessed by Cn → left, Cn → right and
Cn → level. The function n.sub() returns the query ids associated with
node n. For example, e1.sub() returns a list of {2,4} (the leftmost leaf
node in the global query tree), and the leaf node e1 is associated with a
label list {e([9: 10], 3)} and a pointer Ce.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

59

Fig. 2.9. An example of the data structure used by the container algorithm.

The container algorithm is presented in Algorithm 2.9. Algorithm 2.9
recursively search on the global query tree in pre-order traversal to find
paths in the new query which are covered by the global query tree.
Algorithm 2.9 returns the complement results that do not contain the new
XPath query. A query path in the global query tree that has a covering
mapping to the new query path should have both label match and the
parent/child (p/c) or ancestor/descendant (a//d) match and should have a
shorter or equal path length of the new query. A query in the global query
tree that does not contain the new query includes the following cases:

 A node with a node label that is absent in the new query;

 A query path in the global query tree that is incompatible with the
corresponding path in the new query. For instance, the relationship of
parent/child (p/c) of the global tree is not compatible with the
relationship of ancestor/descendant (a//d) in the new query;

 Query whose depth is deeper than that of the new query.

For case (i), the associated query ids will be returned (line 6 in
Algorithm 2.9). For case (ii), the associated query ids will be returned as
shown at line 10 in Algorithm 2.10 and at line 11 in Algorithm 2.11. For

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

60

case (iii), a query node in the global query tree that is compatible with
the new query path and has a shorter path (line 8 in Algorithm 2.10 and
line 9 in Algorithm 2.11) is acceptable and an empty set is returned. If a
node t in the global query tree is not a leaf node, Algorithm 2.9
recursively calls itself for each child of t (line 5 in Algorithm 2.10 and
line 6 in Algorithm 2.11). Notes that Ct represents the current working
element in the list labelList associated with the node t.

Algorithm 2.9. container(t) algorithm.

Algorithm 2.10. process_real_query_root(t) definition.

Algorithm 2.11. process_query_node(t) definition.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

61

The container algorithm proceeds from top to bottom and left to right
(pre-order) on the global query tree. A running example in Fig. 2.9 and
Fig. 2.10 illustrates the algorithm. In Fig. 2.10, the global query tree is
on the right and the new query tree is on the left. The new query Q is
matched against the global tree. The container algorithm starts from the
dummy root node rT represented as #. The matching node for node a1 in
the global query tree is the root query node a of the new Q with region
code ([1:12],1). The value of a1.solution is ([1:12],1). The container
algorithm recursively searches each child node of a1 since node a1 is not
a leaf (line 5 in Algorithm 10) until all leaf nodes are processed in a
pre-order fashion. The container algorithm then processes the node //b1
in the global query tree. There are two elements in the b-list {([2:7],2)
and ([8:11],2)} for the new query Q. Node a with region code ([1:12],1)
and node //b with region code ([2:7],2) in Q satisfy the
ancestor/descendant (a//d) relationship. Since the query node //b in the
new query with region code ([2:7],2) is covered by //b1 (≼) in the global
query tree, the container algorithm continues to search the children of
//b1 (node e1, d1, and c1) (lines 6 to 7) as shown in Algorithm 2.11.

Fig. 2.10. An example of container.

When the algorithm processes node e1 in the global query tree, the
matching node for node //b1 is ([2:7],2) and the current working node for
node e1 is ([9:10],3). We find that there is no parent/child (p/c)
relationship between them, that is the node //b in the new query with
region code ([2:7],2) does not have e as its child. So {2,4} is returned as

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

62

the result (line 11 in Algorithm 11). Similarly, for the other two children
of //b1, container(d1)= ∅ and container(c1)=∅. Therefore, the union of
container results for all children of //b1 is {2,4} when C//b1 is ([2:7],2)
according to line 6 in Algorithm 2.11.

For the second node b with region code ([8:11], 2) in the label list
associated with node //b1 in the global query tree, the
ancestor/descendant (a//d) relationship holds between the node //b with
region code ([8:11], 2) and the node a with region code ([1:12], 1). After
identifying //b1 ≼ ([8: 11], 2), the algorithm expands the node //b1 to
recursively match its children (node e1, d1, and c1) by calling
container(e1), container(d1) and container(c1), respectively. The current
elements Ce1, Cd1, Cc1 in the e-list, d-list, and c-list are ([9:10], 3),
([5:6],3) and ([3:4],3) in Fig. 2.9, respectively. A parent/child (p/c)
relationship exists between the node //b with region code ([8:11], 2) and
the node e with region code ([9:10],3). A parent/child relationship (p/c)
does not exist between the node //b with region code ([8:11], 2) and the
node d with region code ([5:6], 3). Similarly, a parent/child (p/c)
relationship does not exist between the node //b with region code ([8:11],
2) and the node e with region code ([3:4],3) in the new query. Node //b
in the new query with region code ([8:11], 2) does not have d and c as its
children. Therefore, nodes d1 and c1 in the global query tree do not have
mapped nodes in the new query when b1 in the global query tree is
mapped to the new query node //b with region code ([8:11], 2) as shown
in Fig. 2.10. The query ids for the nodes d1 and c1 are then returned.
Hence, container(e1)=∅, container (d1)={3, 4} and container(c1)={4}.
According to line 6 in Algorithm 11, the union of the container results
for all its children of //b1 is {3, 4} when C//b1 is ([8:11],2). As a result, the
container(//b1) = {2, 4} ∩ {3, 4} = {4}.

Similarly, container(//c2) = ∅. For the child node //b2 of node a1 in the
global query tree, the element ([2:7], 2) is a matching node of node //b2
in the global query tree, so the container algorithm expands to search //b2
children node e2 in the global query tree. The element ([2:7], 2) does not
have e as its child because there is no parent/child (p/c) relationship
between the region code ([2:7], 2) and the region code ([9:10], 3). So,
the query ids for e2 are returned and the result is {3}. Since the second
element ([8:11], 2) in the b-list is a matching node of //b2 node and has
an e child node, an empty set is returned (line 9 in Algorithm 2.11) for
([8:11], 2). Hence, the container(//b2) is ∅ ({3} ∩). Furthermore, the ∅
result of container(//b3) is . Line 5 in Algorithm 2.10 leads∅ to

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

63

container(a1)={4}. So, query q4 cannot contain the new query Q and
queries {q1, q2, q3} as the result can contain the query Q.

We highlight the difference: our container algorithm encodes the new
query nodes to reduce the search space; XSearch algorithm still maps a
//-node to paths of length = 0 and length ≥ 1. For example, in Fig. 2.10,
to find the mapping path in the new query for the source path /a//c in the
global query tree, two comparisons (a and c) are needed in our presented
algorithm that examines the label list a of {[1:12], 1} and list c of {[3:4],
3}. But with XSearch, five comparisons (//b, c, d, //b and e) are needed
because of //-operator.

2.3.4. Complexity Analysis

This section presents time complexity and space complexity for our
containee and container algorithms. Our containee and container
algorithms compare each pair of nodes between the global query tree and
the new query for at most once. In XSearch algorithm, each pair of nodes
between |T(R)| and s are checked at least once. For example, the XSearch
algorithm has to check all the descendent nodes under the node with the
ancestor/descendant (a//d) operator (//). In this case, the number of nodes
that needs to be compared can be close to |T(R)| when the occurrence for
//-operator is high.

 Time complexity. There are two cases for the aggregation.

Case 1: There is no //. For this case, the complexity of our containee
algorithm is O(N), where N is the sum of the number of entries in the
label lists that are associated with the new query. For this case, each
corresponding label list will be searched to find the matched entry;
hence, the time complexity is O(N).

Case 2: There is at least one //. For case 2, the time complexity of
our containee algorithm is still O(N) for the same reason. For our
container algorithm, the complexity is O(|T(R)|), where |T(R)|
represents the number of nodes in the global query tree. Our
container algorithm searches the global query tree in pre-order and
compares each node in the tree with the associated label lists for the
new query. In comparison, the time complexity of both the containee
and the container algorithms in XSearch algorithm is O (|s| × |T(R)|),
where |s| is the number of nodes in a new query and |T(R)| is the
number of nodes in the factorization tree [51].

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

64

 Space complexity. The extra space complexity for our containee
algorithm is O(|L|), where |L| is the size of the label lists for storing
region code instances of the global query tree. The space complexity
for storing our container algorithm is O(|l|), where |l| is the size of
label lists for region code instances of the new query. There is no
extra space cost for the XSearch algorithm. We use space to improve
the efficiency.

2.3.5. Label Maintenance for Dynamic Query Updates

The discussions above focus on the scenario of existing static queries. In
a dynamic scenario, queries can be added or removed. When a query is
added or removed, the query index tree structure changes and the region
code (or index) for nodes in the tree needs to be updated as well.
Dynamic query updates affect the containee algorithm, but not the
container algorithm, because the containee algorithm makes use of the
region codes for nodes in the global query tree.

Based on our knowledge, there are some existing discussion on how to
handle dynamic query updates. In [52], the authors investigate the
existing XML labeling schemes and their support for dynamic updates.
The approach discussed in [53] proposed to use a nested tree to reduce
the number of relabeling operations in order to support XML data
updates. The labeling format for a node in a nested tree is
[prefix:localPosition]. Hence, elements that are to be added later can use
the region code ([prefix:left, prefix:right], level).

One possible option is to use real numbers for regions while maintaining
the aggregation tree. For instance, to add a node under [1:2], one could
insert a region [1.1:1.9] as a child without having to resize the regions.
Moreover, from the engineering perspective, we can design two global
query trees on two servers: the on-line server accepts query aggregating
requests and the off-line server accepts query updating requests. At each
server, there are an in-memory global query tree and a serialized global
query tree on disk for backup purpose. After a certain period of time
based on configuration or the amount of changes, the system can switch
to the off-line server as the on-line server, i.e., it performs reindexing on
the global query tree and accepting query aggregating requests. Also, the
original on-line server is used as the off-line server, i.e., it performs
rebuilding the global query tree from the serialized global query tree on
the original off-line server and accepting query updating requests. This

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

65

approach can provide an approximate solution instead of the exact
solution. But it is only temporarily. This is a trade-off between efficiency
and accuracy.

2.4. Experimental Evaluation

The performance of the XSearch algorithm and the proposed query
aggregation approach are evaluated in this section. XPath queries
evaluated in the experiments by two approaches are generated using
XPath query generator of Yfilter [12]. Yfilter is a prototype developed
for filtering XML messages against XPath queries.

The experiments were conducted on a system consisting of two 3.0 GHz
Intel Pentium cores with 2.0 GB of RAM running under Windows XP.
Before the performance evaluation, we first warmed up the JVM and the
CPU to mitigate the effect of cache faults and JVM warm up times. All
the processing times presented are the average value over 20 runs. To
exclude the effect of JVM garbage collection, garbage collection was
explicitly invoked before each measurement.

The parameters used in the performance evaluation are chosen in a way
similar to that used in the evaluation of XSearch [13]. In [13], the
parameter values for evaluating the efficiency of the XSearch algorithm
are listed as follows: (i) the maximum query depth is 10;
(ii) prob(//)=0.05; (iii) the probability of having more than one child at a
given node is 0.1; (iv) the number of queries is varied between 1000 and
100,000. In addition, to measure the impact of prob(//) and
prob(branching), values of prob(//) and prob(branching) are varied in
the interval [0, 0.2] by steps of 0.05. Parameter values used in this
chapter are similar to the values used in [13-15, 10-12].

Performance metrics for evaluating the XSearch and the new aggregation
algorithms included below:

 Processing time for the containee and container algorithms;

 Parsing time for XPath queries and building the global query tree;

 Building time for the label list for region codes;

 and the space complexity for NITF experiments.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

66

The processing time for the containee algorithm (𝑡⊇
௡௘௪ for the proposed

algorithm and 𝑡⊇
௫௦௘௔௥௖௛ for XSearch was measured between the end of

the algorithm and the beginning of the algorithm. The processing time
for the container algorithm (𝑡⊆

௡௘௪ for the proposed algorithm and
𝑡⊆

௫௦௘௔௥௖௛ for XSearch) was measured between the end of the algorithm
and the beginning of assigning the region codes to the new query. The
total processing time is the sum of the processing times of the containee
and container algorithms 𝑡௧௢௧௔௟

௡௘௪ for the proposed algorithm and
𝑡௧௢௧௔௟

௫௦௘௔௥௖௛ for XSearch.

2.4.1. Experiments with NITF Queries

Test queries used in this section were NITF queries that are generated
based on News Industry Text Format (NITF) NITF.dtd. The NITF.dtd is
used in XML pub/sub systems [54]. Six randomly selected queries were
used in the experiments and are listed in Table 2.1. These queries are
used in Sections 2.4.1.1, 2.4.1.2 and 2.4.2.

Table 2.1. The NITF queries to be tested in experiments.

 Query content Type

Q1 /NITF/body/body.content linear path queries no // operator

Q2 /NITF/head linear path queries no // operator

Q3 /NITF//head linear path queries with // operator

Q4 /NITF[body/body.content]/head twig queries no // operator

Q5 /NITF[body//body.content]//headtwig queries with // operator

Q6
/NITF[body/body.content//hr]
/head/docdata/doc-scope/xt

twig queries (depth of 5) with //
operator

The measurement results presented in Figs. 2.11-2.14 are in line with the
complexity analysis of the algorithm presented in Section 2.3.4. The
algorithms proposed in this chapter demonstrate a superior performance
in comparison to XSearch. The measured performance improvement also
includes the impact of system overheads that are difficult to capture in
the time complexity analysis presented earlier. A short discussion of the
performance improvement is presented.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

67

 (a) Q1 (b) Q2

 (c) Q3 (d) Q4

 (e) Q5 (f) Q6

Fig. 2.11. Processing time results for NITF queries.

100 500 1000 2000 3000 4000 5000

0

4

8

12

16

20

24

P
ro
ce

ss
in
g
ti
m
e

 (m
s)

Number of queries

Processing time results for Q1

xsearch.container

xsearch.containee

proposed container
proposed containee

100 500 1000 2000 3000 4000 5000
0

4

8

12

16

20

24

P
ro
ce
ss
in
g
ti
m
e
 (m

s)

Number of queries

Processing time results forQ2

xsearch.container

xsearch.containee

proposed container

proposed containee

100 500 1000 2000 3000 4000 5000

0

4

8

12

16

20

24

P
ro
ce
ss
in
g
 ti
m
e
 (m

s)

Number of queries

Processing time results for Q5

xsearch.container

xsearch.containee

proposed container

proposed containee

100 500 1000 2000 3000 4000 5000
0

4

8

12

16

20

24

P
ro
ce
ss
in
g
 ti
m
e
 (
m
s)

Number of queries

Processing time results forQ6

xsearch.container

xsearch.containee

proposed container

proposed containee

100 500 1000 2000 3000 4000 5000
0

4

8

12

16

20

24

Pr
o
ce
ss
in
g
ti
m
e
 (m

s)

Number of queries

Processing time results forQ3

xsearch.container

xsearch.containee

proposed container

proposed containee

100 500 1000 2000 3000 4000 5000

0

4

8

12

16

20

24

P
ro
ce
ss
in
g
 ti
m
e
 (m

s)

Number of queries

Processing time results forQ4

xsearch.container

xsearch.containee

proposed container

proposed containee

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

68

Fig. 2.12. Running time complexity for Q1.

 (a) Queries with 2 branches (b) Queries with 3 branches

(c) Queries with 4 branches

Fig. 2.13. Processing time results for NITF queries with different
number of branches.

0

2

4

6

8

10

12

100 500 1000 2000 3000 4000 5000

Pr
o
ce

ss
in
g
ti
m
e
fo
r Q

1
 (m

s)

Number of queries

proposed containee proposed container xsearch.containee xsearch.container

Q1 Q2 Q3 Q4 Q5 Q6
0

4

8

12

16

20

24

P
ro
ce
ss
in
g
 ti
m
e
 (m

s)

Different queries

Processing time results forqueries with 2 brances

xsearch.container

xsearch.containee

proposed container

proposed containee

Q1 Q2 Q3 Q4 Q5 Q6
0

4

8

12

16

20

24

P
ro
ce
ss
in
g
ti
m
e
(m
s)

Different queries

Processing time results for queries with 3 branches

xsearch.container

xsearch.containee

proposed container

proposed containee

Q1 Q2 Q3 Q4 Q5 Q6

0

4

8

12

16

20

24

Pr
o
ce
ss
in
g
ti
m
e
(m
s)

Different queries

Processing time results forqueries with 4 branches

xsearch.container

xsearch.containee

proposed container
proposed containee

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

69

 (a) Q1 (b) Q2

 (c) Q3 (d) Q4

 (e) Q5 (f) Q6

Fig. 2.14. Processing time results for NITF queries when N is very large.

2.4.1.1. Processing Time Versus the Number of NITF Queries

The parameters of XPath queries are: prob(//)=0.2, prob(*)=0, the
number of branches is 2, and the query length is 6. The number of a given
set of existing XPath queries varies from 100 to 5000. Duplicated queries

10000 20000 40000 60000 80000 100000

0

50

100

150

200

250

300

350

400

450

500
Pr
o
ce
ss
in
g
 ti
m
e
 (m

s)

Number of queries

Processing time results forQ1

xsearch.container

xsearch.containee

proposed container

proposed containee

10000 20000 40000 60000 80000 100000
0

50

100

150

200

250

300

350

400

450

500

Pr
o
ce
ss
in
g
 ti
m
e
(m

s)

Number of queries

Processing time results forQ2

xsearch.container

xsearch.containee

proposed container

proposed containee

10000 20000 40000 60000 80000 100000
0

50

100

150

200

250

300

350

400

450

500

P
ro
ce
ss
in
g
ti
m
e
 (m

s)

Number of queries

Processing time results forQ5

xsearch.container

xsearch.containee

proposed container

proposed containee

10000 20000 40000 60000 80000 100000

0

50

100

150

200

250

300

350

400

450

500
P
ro
ce
ss
in
g
 ti
m
e
(m

s)

Number of queries

Processing time results forQ6

xsearch.container

xsearch.containee

proposed container
proposed containee

10000 20000 40000 60000 80000 100000

0

50

100

150

200

250

300

350

400

450

500

Pr
o
ce
ss
in
g
 ti
m
e
 (m

s)

Number of queries

Processing time results forQ3

xsearch.container

xsearch.containee

proposed container

proposed containee

10000 20000 40000 60000 80000 100000

0

50

100

150

200

250

300

350

400

450

500

Pr
o
ce
ss
in
g
ti
m
e
(m

s)

Number of queries

Processing time results for Q4

xsearch.container

xsearch.containee

proposed container
proposed containee

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

70

are allowed in the existing query set. The results of the processing time
for Q1-Q6 are shown from Fig. 2.11a to Fig. 2.11f. When N is small
(e.g., N=100), the number of irrelevant nodes (no parent/child or
ancestor/descendant relationship) that can be skipped for the new
proposed algorithm is relatively small and the proposed approach needs
more operations. As a result, the performance becomes worse when N is
small. But when N is large (N≥500 from the experiments), the new
proposed algorithm is much more efficient, because the proposed
approach can effectively skip more irrelevant nodes to save processing
time instead of traversing the whole global tree required by XSearch.

As illustrated in Fig. 2.11f for Q6, the processing time of the new
containee algorithm is small, around 0.025 ms, and that is because a
pre-processing is applied. The pre-processing uses hashing which is of
O(1) time complexity. If a new label is not found, we can determine the
result without going through the entire tree. The XSearch algorithm can
be improved using this pre-processing as well. The current XSearch does
not have this pre-processing. Hence, the processing time of the containee
method for XSearch is significantly higher than that of the new containee
algorithm. 𝑡⊆

௡௘௪and 𝑡⊆
௫௦௘௔௥௖௛ has a difference of 48.8 % to 51.7 % for Q6.

For Q1, Q2 and Q4, the processing times for the containee algorithm are
smaller than the times for computing the results for the container
algorithm. For the containee algorithm, there is only the parent/child
operator (/) in Q1, Q2 and Q4; hence, the algorithm only needs to iterate
all the child nodes of a node in the global query tree, instead of all the
descendant nodes. To compute the containee results, each node of the
new query should be mapped to nodes in the global query tree. On the
other hand, to compute the container results, each node in the global
query tree should be mapped to the new query tree. Since the size of the
global query tree is much larger than that of a new query, more node
comparison operations are required for the container results. Hence, the
processing time for the containee algorithm is shorter than that for the
container algorithm.

For Q3 and Q5, the processing time for the containee is higher than the
processing time for Q1, Q2, and Q4. This is because of the
ancestor/descendant (//) operators they contain. For processing
ancestor/descendant operator (//), access to the whole subtree is required.

When the query depth becomes deeper, the cost for XSearch increases
more than our algorithms because XSearch searches recursively on the

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

71

entire tree while our algorithm iterates on label lists. Fig. 2.12 shows the
variation in processing time observed for Q1 when the number of queries
is varied. The fitable shows that the processing time for containee and
container algorithms increases fairly linearly with the number of queries.
The slope of the lines for our algorithms is lower than that of XSearch.

2.4.1.2. Processing Time Versus the Number of Branches
in NITF Queries

The purpose of this experiment is to evaluate the change in processing
time when the complexity of existing queries is increased. The number
of branches of queries in the global query tree is varied from 2 to 4. In
this set of experiments, the total number of existing NITF queries is fixed
at 3000. Table 2.2 shows three example queries used in the testing with
2, 3, and 4 branches, respectively. For example, the query
(/NITF[body//bibliography]/head[title]/meta) has three branches:
/NITF/body//bibliography, /NITF/head/title, and /NITF/head/meta. The
new queries are described in Table 2.1 and are the same as the queries
used in Section 2.4.1.1. The results are presented in Figs. 2.13(a-c).

Table 2.2. Example queries with 2, 3 and 4 branches.

Num.
of branches

Query content

2 /NITF/head[meta]/title

3 /NITF[body//bibliography]/head[title]/meta

4
/NITF[head/pubdata]/body[body.head
//location//state]/body.content/p[q/pronounce]/person/alt-code

2.4.2. Processing Time for Large Number of Queries

This section examines the processing time of the proposed approach
when the number of existing queries is very large. Queries shown in
Table 2.1 are used as new queries. The parameters for existing queries
are: query path length is 6, prob(//)=20 %, and number of branches is 2.
The total number of existing queries N varies from 10,000 to 100,000.
Existing queries are unique. Results are presented in Figs. 2.14(a-f) and
explained in the passage that follows.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

72

As explained, in each graph of Fig. 2.14, the performance improvement
increases as the number of queries increases. The largest performance
improvement for a given number of queries is observed for Q6 (see
Fig. 2.14f) that has a complex structure.

2.4.3. Parsing Time for XPath Queries and Building Time
for the Global Query Tree

Table 2.3 lists the times used for parsing XPath queries and building the
global query tree by the proposed approach and XSearch. The total
number of existing queries was varied from 100 to 100,000. An XPath
query is first parsed by a Yfilter query parser. The outputs of the Yfilter
query parser are separated branches. A wrapper class called XPathTree
is used to construct an internal tree format for an XPath query. Then,
parsed XPathTrees are added to the global query tree. The parsing and
building time starts when the first query is parsed and ends when the last
query is added to the global query tree. Based on the data in Table 2.3,
we can see that the costs of both algorithms are close.

Table 2.3. Time for parsing XPath queries and building the global query tree
using XSearch and the proposed approach (ms).

N XSearch Proposed approach

100 103.42 103.33

500 217.08 212.44

1000 298.77 295.35

5000 947.39 950.66

10,000 1734.29 1729.47

60,000 8420.67 8388.55

100,000 12842.37 12852.77

2.4.4. Building Time for Region Codes and Label Lists

Table 2.4 lists the time used to build region codes and to create label lists
for the global query tree. N is the number of existing queries. Based on
the processing time for parsing XPath queries and building the global
query tree for the proposed approach (see Table 2.3 and Table 2.4), we
can observe that the ratio between the time for building region codes for
nodes in a global query tree and the time for building a global query tree

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

73

is in a range from 1 % to 2.17 %. Fig. 2.15 depicts the pre-processing
(building) time represented in logarithmic scale for XSearch algorithm
and the proposed approach as a function of N.

Table 2.4. Building time for label lists for the global query tree using
the proposed approach (ms).

Fig. 2.15. The pre-processing time relationship represented in logarithmic
scale between the XSearch and the proposed approach.

2.4.5. Space Usage for NITF Experiments

Section 2.3.4 presents the space complexity for both XSearch and our
proposed approach. In addition to the space complexity, we also
measured the actual memory usage for each approach, as depicted in
Table 2.5. In this table, N represents the number of queries. The second
row represents the total number of nodes in a global query tree using
NITF queries. The height for all the global query trees is 7, including the
root node rT (see the description for NITF XPath query parameters in
Section 2.4.1.1 and 2.4.2). The total memory usage for XSearch and the

1

1000

100 500 1k 2k 3k 4k 5k 10k 20k 40k 60k 80k 100k

lo
g
(b
u
ild
in
g
_t
im

e
)

Subscription population
xsearchalgorithm proposed approach

N 100 500 1000 5000 10,000 60,000 100,000
Time 1.05 3.46 6.41 20.86 41.00 175.91 278.10

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

74

proposed approach is shown in the Table 2.5. The proposed approach
occupies 50 %-60 % more memory space than the XSearch algorithm.

Table 2.5. Space usage for both approaches in (kbytes).

2.5. Conclusions

This chapter presented a novel approach for query aggregation for XML
pub/sub systems. The main idea was to adapt the region coding scheme
proposed in XML database systems and tailor it to our target domain.
Our approach comprised of the containee and container algorithms.
Efficient XML query aggregation algorithm can reduce the number of
subscriptions, which can then improve the performance of XML
document filtering and matching time. Both of the containee and
container algorithms have a lower time complexity in comparison to
XSearch. Our new approach can reduce the processing time by up to
about 80 % when the number of queries is large. The tradeoff is that the
space complexity of the proposed approach is higher than that of
XSearch. The memory requirement (see Table 2.5) is still reasonable for
commercial off the shelf servers on which the proposed approach
will be executed.

There are a few directions that can be studied further. First, we will study
the approaches for dynamic query updates and investigate their
performance. Second, we will conduct experiments that integrate query
aggregation with XML message delivery technologies [37].

Acknowledgments

The authors would like to thank Alcatel-Lucent, Ontario Centres of
Excellence and NSERC Canada for supporting the research. Thanks to
Prof. Pascal Felber and Dr. Nicolas Bruno for providing the source code
of XSearch.

N 1000 5000 10,000 60,000 100,000

of nodes 1,418 4,285 6,629 19,678 26,474

Xsearch 1086.1 4211.2 7501.8 31051.3 47669.8

Proposed approach 1800.0 6722.5 11894.6 48037.6 72056.9

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

75

References

[1]. Extensible Markup Language (XML), http://www.w3.org/XML/
[2]. Cisco’s XML Management Interfaces Documents,

https://developer.cisco.com/site/XMLmi/overview/tech-overview.gsp
[3]. XML and Junos OS Overview,

https://www.juniper.net/documentation/en_US/junos/topics/concept/juno
s-script-automation-junos-os-XML-overview.html

[4]. Y. Cao, C.-H. Lung, S. A. Ajila, Constraint-based multi-tenant SaaS
deployment using feature modeling and XML filtering techniques, in
Proceedings of the IEEE 39th Annual Computer Software and Applications
Conference (COMPSAC‘15), pp. 454-459.

[5]. A. Etedali, C.-H. Lung, S. Ajila, I. Veselinovic, Automated
constraint-based multi-tenant SaaS configuration support using XML
filtering techniques, in Proceedings of the IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC’17), pp. 413-418.

[6]. M. Assuncao, C. B. Westphall, F. Koch, XML in Multi-Agent Based
Applications for Network Management,
https://www.researchgate.net/publication/241677994

[7]. J. Clark, S. DeRose, XML Path Language (XPath) 1.0,
http://www.w3.org/TR/xpath

[8]. T. Schwentick, Xpath query containment, SIGMOD Record, Vol. 33,
Issue 1, 2004, pp. 101-109.

[9]. M. Marx, E. Sherkhonov, Containment for queries over trees with attribute
value comparisons, Information Systems, Vol. 58, 2016, pp. 1-13.

[10]. L. Dai, C.-H. Lung, S. Majumdar, Bfilter: Efficient XML message filtering
and matching in publish/subscribe systems, Journal of Software, Vol. 11,
Issue 4, 2016, pp. 376-402.

[11]. C. Y. Chan, P. Felber, M. Garofalakis, R. Rastogi, Efficient filtering of
XML documents with XPath expressions, The VLDB Journal, Vol. 11,
Issue 4, 2002, pp. 354-379.

[12]. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, P. M. Fischer, Path sharing
and predicate evaluation for high-performance XML filtering, ACM
Transactions on Database Systems, Vol. 28, Issue 4, 2003, pp. 467-516.

[13]. R. Chand, P. Felber, Scalable distribution of XML content with XNET,
IEEE Transactions on Parallel Distributed Systems, Vol. 19, Issue 4, 2008,
pp. 447-461.

[14]. S. Yoo, J. H. Son, M. H. Kim, An efficient subscription routing algorithm
for scalable XML-based publish/subscribe systems, Journal of Systems
and Software, Vol. 79, Issue 12, 2006, pp. 1767-1781.

[15]. G. Li, S. Hou, H.-A. Jacobsen, Routing of XML and XPath queries in data
dissemination networks, in Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS’08), June 2008,
pp. 627-638.

[16]. M. Fu, Y. Zhang, Homomorphism resolving of XPath trees based on
automata, in Proceedings of the Asia Pacific Web and Web-Age

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

76

Information Management Joint Conference on Web and Big Data
(APWeb/WAIM’07), June 2007, pp. 821-828.

[17]. Q. Li, B. Moon, Indexing and querying XML data for regular path
expressions, in Proceedings of the International Conference on Very Large
Data Bases (VLDB’01), 2001, pp. 361-370.

[18]. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman, On supporting
containment queries in relational database management systems, in
Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2001, pp. 425-436.

[19]. I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita,
C. Zhang, Storing and querying ordered XML using a relational database
system, in Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2002, pp. 204-215.

[20]. X. Wu, M. L. Lee, W. Hsu, A prime number labeling scheme for dynamic
ordered XML trees, in Proceedings of the IEEE International Conference
on Data Engineering (ICDE’04), 2004, pp. 66-78.

[21]. N. Bruno, N. Koudas, D. Srivastava, Holistic twig joins: optimal XML
pattern matching, in Proceedings of the ACM SIGMOD International
Conference on Management of Data, June 2002, pp. 310-321.

[22]. Y. Cao, C.-H. Lung, S. Majumdar, An XPath query aggregation algorithm
using a region encoding, in Proceedings of the IEEE/IPSJ International
Symposium on Applications and the Internet (SAINT’1), July 2011,
pp. 27-36.

[23]. K. S. Candan, W.-P. Hsiung, S. Chen, J. Tatemura, D. Agrawal, AFilter:
adaptable XML filtering with prefix-caching suffix-clustering, in
Proceedings of the International Conference on Very Large Data Bases
(VLDB’06), September 2006, pp. 559-570.

[24]. X. Gong, W. Qian, Y. Yan, A. Zhou, Bloom filter-based XML packets
filtering for millions of path queries, in Proceedings of the IEEE
International Conference on Data Engineering (ICDE’05), April 2005,
pp. 890-901.

[25]. J. Kwon, P. Rao, B. Moon, S. Lee, Fist: Scalable XML document filtering
by sequencing twig patterns, in Proceedings of the International
conference on Very Large Data Bases (VLDB’05), September 2005,
pp. 217-228.

[26]. D. Lee, H. Shin, J. Kwon, W. Yang, S. Lee, SFilter: Schema based filtering
system for XML streams, in Proceedings of the International Conference
on Multimedia and Ubiquitous Engineering (MUE’07), 2007, pp. 266-271.

[27]. R. Martins, J. Pereira, WFilter: Efficient XML filtering for large scale
publish/subscribe systems, in Proceedings of the Symposium on INForum,
2011, pp. 1-14.
https://fenix.tecnico.ulisboa.pt/downloadFile/395143156315/typeinst.pdf

[28]. B. Luo, D. Lee, W.-C. Lee, P. Liu, QFilter: Fine-grained run-time XML
access control via NFA-based query rewriting, in Proceedings of the ACM
International Conference on Information and Knowledge Management
(CIKM’04), 2004, pp. 543-552.

Chapter 2. An XPath Query Aggregation Approach for XML Publish/Subscribe Systems

77

[29]. P. Saxena, R. Kamal, System architecture and effect of depth of query on
XML document filtering using PFilter, in Proceedings of the 6th
International Conference on Contemporary Computing (IC3’13), 2013,
pp. 192-195.

[30]. W. Sun, Y. Qin, P. Yu, Z. Zhang, Z. He, HFilter: Hybrid finite automaton
based stream filtering for deep and recursive XML data, in Database and
Expert Systems Applications, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2008, pp. 566-580.

[31]. H. Zhao, W. Xia, J. Zhao, The research on XML filtering model using lazy
DFA, Journal of Software, Vol. 7, 2012, pp. 1759-1766.

[32]. A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, L. Zhang, Clustering algorithms
for content-based publication-subscription systems, in Proceedings of the
IEEE International Conference on Distributed Computing Systems
(ICDCS’02), July 2002, pp. 133-142.

[33]. O. Papaemmanouil, U. Cetintemel, Semcast: Semantic multicast for
content-based data dissemination, in Proceedings of the IEEE
International Conference on Data Engineering (ICDE’05), April 2005,
pp. 242-253.

[34]. F. Cao, J. P. Singh, Medym: match-early and dynamic multicast for
content-based publish- subscribe service networks, in Proceedings of the
ICDCS Workshops (DEBS’05), June 2005, pp. 370-376.

[35]. V. Sourlas, G. S. Paschos, P. Flegkas, L. Tassiulas, Caching in content-
based publish/subscribe systems, in Proceedings of the IEEE Global
Communications Conference (GLOBECOM’09), December 2009, pp. 1-6.

[36]. A. Carzaniga, A. L. Wolf, Forwarding in a content-based network, in
Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM’03), August 2003, pp. 163-174.

[37]. Y. Cao, C.-H. Lung, S. Majumdar, A peer-to-peer model for XML
publish/subscribe services, in Proceedings of the Annual Communication
Networks and Services Research Conference (CNSR’11), May 2011,
pp. 26-32.

[38]. Y. Diao, S. Rizvi, M. J. Franklin, Towards an internet-scale XML
dissemination service, in Proceedings of the International Conference on
Very Large Data Bases (VLDB’04), September 2004, pp. 612-623.

[39]. Y.-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, H. J. Wang,
Subscription partitioning and routing in content-based publish/subscribe
network, in Proceedings of the International Symposium on Distributed
Computing (DISC’02), October 2002.

[40]. G. Miklau, D. Suciu, Containment and equivalence for an XPath fragment,
in Proceedings of the Symposium on Principles of Database Systems
(PODS’02), June 2002, pp. 65-76.

[41]. F. Neven, T. Schwentick, XPath containment in the presence of
disjunction, DTDs, and variables, in Proceedings of the International
Conference on Database Theory (ICDT’03), 2003, pp. 315-329.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

78

[42]. P. T. Wood, Containment for XPath fragments under DTD constraints, in
Proceedings of the International Conference on Database Theory
(ICDT’03), January 2003, pp. 300-314.

[43]. P. Placek, D. Theodoratos, S. Souldatos, T. Dalamagas, T. Sellis, A
heuristic approach for checking containment of generalized tree-pattern
queries, in Proceedings of the 17th ACM Conference on Information and
Knowledge Management (CIKM’08), 2008, pp. 551-560.

[44]. J. Lu, T. W. Ling, Z. Bao, C. Wang, Extended XML tree pattern matching:
Theories and algorithms, IEEE Transactions on Knowledge and Data
Engineering, Vol. 23, Issue 3, 2011, pp. 402-416.

[45]. J. Liu, Z. Ma, L. Yan, Efficient labeling scheme for dynamic XML trees,
Information Sciences, Vol. 221, 2013, pp. 338-354.

[46]. X. Liu, L. Chen, C. Wan, D. Liu, N. Xiong, Exploiting structures in
keyword queries for effective XML search, Information Sciences 240,
Vol. 240, 2013, pp. 56-71.

[47]. F. Li, H. Wang, L. Hao, J. Li, H. Gao, Approximate joins for XML at label
level, Information Sciences, Vol. 282, 2014, pp. 237-249.

[48]. S. Madria, Y. Chen, K. Passi, S. Bhowmick, Efficient processing of XPath
queries using indexes, Information Systems, Vol. 32, Issue 1, 2007,
pp. 131-159.

[49]. A. Termehchy, M. Winslett, Using structural information in XML
keyword search effectively, ACM Transactions on Database Systems,
Vol. 36, Issue 1, 2011, pp. 4:1-4:39.

[50]. W.-C. Hsu, I.-E. Liao, CIS-X: A compacted indexing scheme for efficient
query evaluation of XML documents, Information Sciences, Vol. 241,
2013, pp. 195-211.

[51]. R. Chand, P. Felber, Scalable distribution of XML content with XNET,
IEEE Transactions on Parallel Distributed Systems, Vol. 19, Issue 4, 2008,
pp. 447-461.

[52]. S. Subramaniam, S.-C. Haw, P. K. Hoong, Mapping and labeling XML
data for dynamic update, in Proceedings of the International Conference
on Computer Research and Development (ICCRD’10), May 2010,
pp. 781-786.

[53]. J.-H. Yun, C.-W. Chung, Dynamic interval-based labeling scheme for
efficient XML query and update processing, Journal of System Software,
Vol. 81, 2008, pp. 56-70.

[54]. IPTC, NITF News Industry Text Format, http://www.NITF.org/

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

79

Chapter 3

A Small World Load-Balancing Approach
for Queues Based Systems

Eman-Yaser Daraghmi and Shyan-Ming Yuan3

3.1. Introduction

Nowadays, load-balancing algorithms have become increasingly popular
and powerful techniques in improving the performance of Queues based
Systems (QbS) [1]. A Queues based System is defined as a system of
several distributed machines or nodes with waiting lines, or queues each
of which holds a workload. Load balancing algorithms aims at increasing
the performance of QbS by redistributing the workloads in a way that
ensures minimizing the waiting time, expanding the system resource
utilization, maximizing throughput, and avoiding the overload situation
[2]. Therefore, it is prerequisite to smoothly spread the load among the
nodes or lines to avoid, if possible, the situation where one line is heavily
loaded with excess of workloads while another line is lightly loaded or
idle [3, 4].

As stated in [5, 6], load-balancing algorithms can be categorized into
either static or dynamic. Static load-balancing necessitates complete
information of the entire system and workloads information, whereas
dynamic load balancing requires light assumption about the system or
the workloads. As in QbS, the workloads are generally not completely
known, and each node has different capacity and runs at different speed,
it is more efficient to employ the dynamic load balancing algorithms.
The diffusion approach [7, 8] is one of the dynamic load balancing
techniques that have received much attention by researchers in the past
decades to solve the load-balancing problem. In standard diffusion
approach, a system which has different nodes exchanges workloads via
the communication links between these nodes. The workloads are

Eman Yasser Daraghmi
Palestine Technical University Kadoori, Tulkarm, Palestine

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

80

distributed among the nodes, and the load balancing process works in
sequential rounds. In every round, each node is allowed to balance its
load with all its neighbors by exchanging the workloads to balance the
total system load globally, meaning to minimize the load difference
between the nodes with minimum and maximum load. The
nearest-neighbor approach [9] is another dynamic technique that allows
the nodes to communicate and migrate the excess workloads with their
immediate neighbors only. Each node balances the workload among its
neighbors in the hope that after a number of iterations the entire system
will approach the balanced state.

Generally, dynamic load-balancing algorithms still present fundamental
challenges when being executed at large-scale systems. Previous
research [10–12] concluded that three structural factors, which refer to
the structure of the system that executes the load-balancing algorithm,
decrease the performance of any load-balancing algorithm as well as
affect the algorithm convergence rate. The factors are: (1) Increasing the
number of nodes in the system (i.e. the number of the nodes that
exchange their workload information); (2) Increasing the network
diameter which is defined as the longest shortest path between any two
nodes of the network; (3) Increasing the communication overheads or the
communication delays among the nodes. These factors, from one hand,
make it not feasible for a node to collect the load-information of all other
nodes in the system. Moreover, even if a node collects the
load-information of all other nodes in the system, this information will
be not up to date when it is used (i.e. old information may not reflect the
current load of a node) as more communication delays make this
information old and thus the task of balancing the load is significantly
damaged. From the other hand, it is intuitive that a network with longer
diameter will take longer time to converge as the number of iterations to
propagate the workloads to all nodes is proportional to the network
diameter. In addition, previous studies concluded that [13] technical
load-balancing factors, which refer to the algorithm policies that should
be considered when designing a load-balancing algorithm, such as the
load migration rule, affect the performance of load-balancing algorithm.

In this research, we aim at improving the performance of load balancing
algorithm by considering both the structural and the technical
load-balancing factors by proposing a two-stage load-balancing
approach. The approach, first, designs an overlay network that employs
the concept of small world in order to reduce the effect of the structural
factors and then, applies an improving load-balancing that considers the

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

81

technical factors within the constructed overlay network. This chapter is
an extended version of our work that was previously published in [14].
Our previous work proposed a load balancing approach applied to a
cafeteria management system. Here, we generalize our work in order to
allow our approach to be applied to any Queues based System (QbS).
Therefore, a generalized approach will be described in details in this
chapter. Moreover, additional extensive experiments were conducted to
evaluate the performance of the proposed approach on various aspects,
including throughput, response time, communication overhead,
movements cost, makespan, and queue length.

The rest of this chapter is organized as follow: The literature review is
presented in Section 3.2. Section 3.3 defines the load balancing problem
formally, describes the FSW construction and explains how it is used to
solve the load balancing problem. The dynamic load balancing algorithm
and its performance are presented in Sections 3.4 and 3.5 respectively.
Finally, Section 3.6 concludes the chapter.

3.2. Literature Review

3.2.1. Background on Small World Networks

A small-world network is a type of mathematical graph in which most of
the nodes are not neighbors of one another, but these nodes can be
reached from every other by a small number of hops or steps [15]. Many
empirical graphs are well-modeled by small-world networks. A certain
category of small-world networks were identified as a class of random
graphs by Duncan Watts and Steven Strogatz in [16, 17]. They noted that
graphs could be classified according to two independent structural
features, namely the clustering coefficient, which is defined as the
probability that two neighbors of a node are neighbors themselves and
average node-to-node distance (also known as average shortest path
length). Watts and Strogatz measured that in fact many real-world
networks have a small average shortest path length, but also a clustering
coefficient significantly higher than expected by random chance. A
network is said to be small world when it has a small average path length
and large cluster coefficient.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

82

3.2.2. Related Works

Previous studies have proposed numerous load-balancing algorithms
targeting at static, small-scale, homogeneous and/or heterogeneous
environments [7, 18, 19]. In our previous work [14], we proposed a
dynamic load balancing algorithm that based on the diffusion approach
targeting practical distributed systems. We employ the cafeteria system
as a case to prove the efficiency of our work. The diffusion approach
[7, 18] is a dynamic load-balancing technique where each node
simultaneously sends the excessive workloads to its under loaded
neighbors and receives workloads from its neighbors with higher
workload [5, 20]. In 1990, Boillat et al. [20] presented a new approach
to solve the load balancing problem for parallel programs. In 1989,
Cybenko [5] studied the diffusion schemes for dynamic load balancing
on a message passing multiprocessor networks. Robert Elsasser [21]
generalized the standard diffusion schemes for homogenous networks to
deal with the heterogeneous network. In [22], the first order diffusion
load balancing, relaxed diffusion and generalized adaptive exchange
(GAE) algorithms for totally dynamic networks were investigated. In
[23], the authors proposed a modified version of diffusion algorithm for
load balancing on dynamic networks. The authors in [24] considered a
neighbourhood load balancing algorithm in the context of selfish clients.
They assumed that a network of n processors is given, with m tasks
assigned to the processors. The processors may have different speeds and
the tasks may have different weights. Neighbourhood load balancing
algorithms [9] are diffusion algorithm that have the advantage that they
are very simple and that the vertices do not need any global information
to base their balancing decisions on.

3.3. Functional Small World Network (FSW)

In this section, we present an overview of the Functional Small World
(FSW) design and provide the technical details of constructing the FSW
overlay network. The notations used in this chapter is summarized in
Table 3.1.

3.3.1. Overview

FSW plays two important roles: 1) An overlay network that provides
connectivity among nodes, and 2) A distributed solution that supports
efficient dynamic load-balancing. In FSW, the nodes are organized in

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

83

accordance with the Functionality Set (FS) defined by each node in the
system. Nodes with similar functionality sets form one cluster. We based
on the concept proposed by Tversky [25] to define the relation of similar
functionality employed in our research.

Table 3.1. The symbols used in the chapter.

Symbol Description
FSW Functional Small World
FS The Functionality Set
G The system that executes the load-balancing algorithm
N The nodes in the system
E The connection-links among nodes
AF All Functions set

(n)iWL The set of assigned workloads for node in

ic The capacity of node in

ild The load of node in

()iAdj n The set of neighbor nodes for node in

Info The set stored the information of neighbor nodes for node in

mig The array that store the amount of migrated workloads

il The effective-load of node in

avgl The average effective-load

lowerN The set of assistant neighbors

LD The load difference

i The excess workloads that node in must migrate

i The amount of workloads that node in can accept

Definition 1 (similar functionality). Generally, similar functionality is
defined as the difference between the amount of functions in-common
among nodes and the amount of functions unique to nodes.

Formally, given any nodes ,i jn n N with a functionality set of each
node

inFS ,
jnFS , the relation of similar functionality is defined by:

 (, n) | FS FS | (| FS FS |) (| FS FS |).
i j i j j ii j n n n n n ns n      (3.1)

Therefore, nodes with (,) 0i js n n  are not similar, while nodes with
(,) 0i js n n  are similar.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

84

It is clear that functions in common increase similarity, whereas
functions that are unique to one node decrease similarity. In practice, the
QbS is modeled as an undirected graph G=(N, E) where N represents the
set of heterogeneous nodes in the system and E describes the
connection-links among them. Each node has its role within the system
and executes several functions, such as printing, computing, etc.; thus,
each node based on its role within the system defines a set, namely, the
Functionality Set (FS). Since a small world network has two properties:
(1) low average hop count between any two random chosen nodes, and
(2) high clustering coefficient, our approach, in order to construct the
FSW, categorizes the nodes in the system into two types: 1) An in-
domain node, and 2) A master node. The in-domain node represents a
node in which located in one cluster and only has connections via short-
links with all in-domain nodes placed in the same cluster and the master
node of that cluster. The master node represents a node located in one
cluster and has a connection via short-links with all in-domain nodes
placed in the same cluster and at the same time has connection via long-
links with some master nodes located in other clusters. Fig. 3.1 shows an
illustration example of FSW, where nodes n1, n4 and n6 are in-domain
nodes, while nodes n2, n3 and n5 are master nodes. The long-links (i.e.
blue lines in Fig. 3.1) creates connections among master nodes and is
responsible for achieving the high clustering coefficient in the network
(property 2 in small world networks). Short-links (i.e. black lines) creates
connection among in-domain nodes, and among master nodes and in-
domain nodes. Short-links and the long-links aim at achieving the
properties (1) and (2).

Fig. 3.1. An Example of FSW overlay network.

In our design, we also define the cluster-size M to be the maximum
number of nodes that are allowed to form one cluster. Pre-defining the

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

85

cluster size is important to keep small number of nodes in one cluster and
to maintain good clustering effect. In this research, we adopt the
guideline proposed by [26] to define M. Hui et al. suggested that the
cluster size ranges from 1 to 64 maintains good clustering effect.
Practically, designing a FSW overlay network plays an important role in
decreasing the number of nodes that will exchange the workloads
information, minimizing the network diameter, deteriorating the
communication overhead, and decreasing the time delay results from the
task re-migration process; therefore, this approach is efficient to be
applied not only for the entire system but also clustering inside the cluster
to increase the performance of the load-balancing algorithms.

In summary, a FSW overlay network can be formed as follows: Each
node maintains long-links to ensure the connectivity among the master
nodes (i.e. the connectivity among the clusters to provide shortcuts to
allow a node reach other nodes that execute similar functionality and
located in other clusters quickly) and/or short-links to ensure the
connectivity among the in-domain nodes and the connectivity among the
in-domain nodes and the master nodes so that a balancing message issued
from any node can reach any other node in the network. Via short-links
and long-links, navigation and broadcasting in the network can be
performed efficiently. In the following sections, we introduce our
approach in details of designing and constructing a FSW.

3.3.2. Constructing Functional Small World (FSW) Overlay
Network

Constructing a FSW overlay network depicted above involves three
major tasks: 1) Functional-Clustering; 2) Cluster-Formation, and
3) Overlay Network Construction.

3.3.2.1. Functional-Clustering (FC)

In general, the Functional-Clustering (FC) task aims at 1) Defining the
clusters (i.e. the number and the name of clusters) that should be created
within the overlay network based on the functional executed within the
system, and 2) Adding the nodes initially to the cluster(s) based on the
in-common functions between the node and the cluster. In other words,
if there is at least one function in-common between the node and the
cluster, then the node will be added initially to that cluster. Note that:
initially, in this step a node can be added to more than one cluster, but
finally in the next tasks a node will only be added to one cluster.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

86

This task is executed before or when a node joins the network. Each node
ni in the system defines its Functionality Set (FS), which indicates the
functions that a node can perform and execute within the system, such as

1 2FS { , ,..., }i kf f f , where iFS is the functionality set of node in , 1f is

a function that can be executed by node in , and k is the number of

functions that node in can execute. A cluster, namely, , ,..,i j kCluster
 has

a functionality set , ,..,
{i, j,..., k}

i j kClusterFS 
. Likewise, ACluster has

FS= {A}. Following are the steps performed by the functional-clustering
task:

1. Let AF (All Functions) be the set of all functions executed in the
system 1 1 2.... { , ,..., }n sAF FS FS f f f   , where s is the total

number of functions executed within the system, and iFS is the

functionality set of node in . In other words, AF is the union of all

FSs defined in the system.

2. For each function f AF , create a cluster, namely, fcluster .

3. Since each node in has its functionality set 1{ ,..., }i kFS f f , in this

step initially node in will be simultaneously added to

1 2
cluster ,cluster ,...,cluster

kf f f . In other nodes, if a node in executes

a function fa , then there is an in-common function between a node

in and acluster . Thus, the node in will be added to cluster

 acluster .

Note that, the number of clusters that a node can be added to depends on
the number of functions that a node executes within the system; a node
that executes more than one function will be added initially to more than
one cluster at the end of this task.

3.3.2.2. Cluster-Formation

As mentioned in the Functional-Clustering (FC) task, a node initially can
be added to more than one cluster. Therefore, the Cluster-Formation
(CF) task is a key task to ensure that a node will be added to only one
cluster regarding the functional similarity. According to definition 1,
nodes are considered as similar nodes if the amount of in-common

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

87

functions among nodes is more than the amount of functions unique to
nodes. This task aims at: 1) deciding the nodes that must finally be added
to the cluster, and 2) checking the cluster size; thus, if the cluster size
exceeds M, which is a preset defined maximum cluster size, the cluster
will be split into two clusters in order to maintain good clustering effect.
To determine the cluster size, we adopt the guideline proposed by [26].
Hui et al. suggested that the maximum cluster size is 64 in order to
maintain good clustering effect. If the cluster size exceeds M, the steps
of the functional-clustering task, and the cluster-formation task will be
applied to split that cluster. Fig. 3.2 illustrate the pseudo code of the
cluster-formation task.

3.3.2.3. Overlay Network Construction

This task constructs the FSW overlay network across the created clusters
(i.e. after performing the previous two tasks) to form a functional small
world network by:

1. Defining the in-domain nodes and the master nodes.

The size of the FS of each node located in one cluster will be checked
(i.e. the number of functions that a node can execute); therefore, a node
that has the largest FS size in icluster will be defined as a master node

for icluster , and the other nodes located in icluster will be defined as the

in-domain nodes for that cluster. Note, when two or more nodes have the
largest FS size, then only one node from these nodes will be selected
randomly as a master node for a cluster since that each cluster has only
one master node.

2. Adding long-links and short-links among the nodes.

Long-links connect a master node located in one cluster with other
master nodes located in other clusters based on the functional similarity
between theses master nodes (i.e. see definition 1). Short-links connect
the in-domain nodes located in one cluster with the other in-domain
nodes located in the same cluster, and it also connects the in-domain
nodes located in a cluster with the master node of the same cluster.
In-domain nodes, master nodes, long-links and short-links play a key role
in reducing the effect of the structural factors and transforming the
network into a small world.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

88

Fig. 3.2. Pseudo Code of Cluster-Formation task.

3.4. Dynamic Load-Balancing

In this section, we explain the proposed load-balancing algorithm that
will be executed in the constructed FSW overlay network. We first
formulate the problem in Section 3.4.1, then we present our proposed
algorithm in Section 3.4.2.

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

89

3.4.1. Problem Formulation

Generally, the entire distributed system is modeled as an undirected
graph (,)G N E where N represents the set of heterogeneous nodes
and E describes the connections among them. Each node in the system
(i.e. whether an in-domain node or a master node) will be assigned some
workloads wl during the execution of the system, where each workload
assigned to a node consumes effort and time; thus, each workload has
different weight w . The weight of the total workloads assigned to a node
is referred to as the load of a node 0ild  . Each assigned workload also

is associated with a function that can process the assigned workload.
Each node also has a capacity 0ic  which specifies its processing
capacities (i.e. the largest amount of workload that can be assigned to a
node in), where ,i ic ld Z . Since the capacity of each node in

heterogeneous systems is not equal, our proposed algorithm considers
the processing capacity of each node when deciding whether a node is
overloaded or not.

Definition 2 (the effective-load). Given a node in N that has a

capacity and assigned some workloads, the effective-load il of node in

is defined as the total weight of the workloads assigned to node in divided

by the capacity of node in . Formally, the effective-load of node in is the

load of in divided by the capacity of in .

(n)

()

,j i

j
wl WLi

i
i i

w wl
ld

l
c c


 


 (3.2)

where 1 1() { , , , ,..., , , , }i id id z z id idWL n wl w ctr F wl w ctr F     is the set of

workloads assigned to node in .

3.4.2. Our Proposed Algorithm

Our proposed algorithm is shown in Fig. 3.3. Each node in in G executes
the same algorithm in parallel. As mentioned before, the structure of the
system is simplified by constructing the FSW to decrease the graph
diameter, the number of nodes that exchange the load information and
communication overhead.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

90

Fig. 3.3. Algorithm. NeighborhoodLB.

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

91

The steps of constructing FSW overlay network is illustrated in
Section 3.3. The nodes will be spread into clusters, and each node will
have in addition to the node id idn , a cluster id idctr to show the cluster
in which a node is located and idFS to check if the received task can be
processed by a node. Following paragraphs demonstrate the proposed
load-balancing algorithm that will be executed within the constructed
overlay network in details.

3.4.2.1. The Initialization Stage

Let (n)iWL be the set of workloads assigned to node in during the
execution of the computing distributed system, where

1 1 1() { , , , ,..., , , , }i id z z id zWL n wl w ctr F wl w ctr F     . Each assigned

workload wl consumes time and efforts until being completed; thus, each
assigned workload has weight w . Each workload wl assigned initially
to idctr and associated with a function F (i.e. F is the function that can

process the workload). Each node in also has, after constructing FSW, a

pre-defined set of neighbor-nodes (n)iAdj to store the nodes that have

connection-links either long-links or short-links with node in . Each node

in initializes its state (initialization stage) in steps 1 through step 3.

Step 1 (Line 1 in NeighborhoodLB Algorithm): Each node in defines

a set { , , , , }id id id id idInfo ctr n ld c FS   to store the information of the

nodes in the neighbor-nodes set, where idctr : is the id of the cluster in

which a node the has idn is located, idn : the id of a node,

()

()
j id

id j
wl WL n

ld w wl


  the load of node idn (i.e. the total weight of all

workloads assigned to the node idn ,), idc : is the processing capacity of

idn , and idFS is the functional set of idn .

Step 2 (Line 2 in NeighborhoodLB Algorithm): Each node in also

defines an array (n)imig to store the amount of the migrated workload

that node in will transfer to the under loaded nodes of the set

neighbor-nodes. Initially, the workloads that will be transferred to other
nodes is 0 for all nodes in the set of neighbor-nodes.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

92

Step 3 (Line 3 in NeighborhoodLB Algorithm): Each node in

computes its initial effective-load il via the equation defined in

definition 2 (i.e. the total weight of the workloads assigned to node in

divided by the capacity of node in).

3.4.2.2. The Information Broadcasting Stage

Step 4 (Line 4 in NeighborhoodLB Algorithm): Each node in
broadcasts its initial state (i.e. initial information after executing the
initialization stage) to only its neighbor-nodes (the nodes stored in the
set adj). Since a master node has connections with some master nodes
located in other clusters that have similar functionality via long-links,
and it has also connections with the in-domain nodes located in the same
cluster via short-links, the capacity of a master node that will be sent to

other nodes is divided among the clusters | | 1
ic

long links  in the

broadcasting stage.

In fact, each node maintains a FIFO message queue which holds the
incoming messages. Each message has the format

, , , ,FS ,"T",[g,"F"]id f f f fctr n ld c  , where idctr is the cluster id where

the node that sends the message is located in, fn is the id of the sender

node, fld the loads of the sender node, fc is the capacity of the sender

node, fFS is the functionality set of the sender node, T is the type of

the message, g is the migration information (i.e. information about the

migrated task and the function F that can process the migrated task).
There are two types of messages:

1. Workload Migration message (G): in sends a G-message to jn to tell

it that in wants to migrate g units of workload to jn .

2. Broadcast message (B): broadcast the status (i.e. cluster id, node id,
load and capacity to all neighbor-nodes).

Step 5 (Line 5 in NeighborhoodLB Algorithm): The main part of the
algorithm starts when a node takes the first message from the queue and
processes the message according to its type. If the message type is B,

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

93

then the node only updates its information stored in the Info set. If the

message type is G, then it updates the information stored in the Info set,
computes its effective load, and broadcasts its new status to its
neighbor-nodes.

3.4.2.3. Computing the Average Effective-Load

Step 6 (Line 6 in NeighborhoodLB Algorithm): After updating the
information stored in the Info set (i.e. after the broadcasting stage), each

node computes the average effective-load avgl of a node and its

neighbor-nodes to facilitate 1) making a decision (i.e. whether a node
overloaded or not) later by a node, and 2) defining the set of assistant
neighbors in the next stage. The average effective-load is computed by
the following equation:

 inf

inf

.
i j

j o
avg

i j
j o

ld ld

l
c c













 (3.3)

Note that, in the above formula the capacity of all nodes is considered
since in heterogeneous systems the capacity is varied from one node
to another.

3.4.2.4. Finding the Set of Assistant-Neighbors Stage

Step 7 (Line 7 in NeighborhoodLB Algorithm): According to the
average effective-load computed in step 6 by each node, each node
defines in this stage its assistant-neighbors lowerN . The set of

assistant-neighbors lowerN of node in are the set of nodes that have

effective-load lower than the average effective-load computed
by node in .

3.4.2.5. Workload Transfer Strategy

Step 8 (Line 8 in NeighborhoodLB Algorithm): The decision of
calling a procedure LB to migrate the excess workloads or not depends
on the load difference between the current effective-load of node in and

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

94

the average effective-load computed by in . Therefore, the excess

workload will be migrated if the load difference is positive.

3.4.2.6. Load-Balancing Mechanism (Procedure LB)

The pseudo-code of the procedure LB is given in Fig. 3.4. In the
procedure LB, the load difference iLD , the set of assistant-neighbors

lowerN , and the set of the assigned workloads (n)iWL are formed the

procedure input parameters. The procedure will be called if the iLD is
positive, and it works until the load difference of the heavily loaded
caller node in becomes less than zero 0i i avgLD l l   . In other words,

the procedure works until the heavily loaded node becomes
under-loaded, which means the effective-load of a node is less than the
average effective-load computed by a node. The procedure first
computes the excess workload i of the heavily-loaded node in that

needs to be transferred.

i i lowerProcedure LB(WL(n),LD , N)

Begin

While(LD 0)

1.Compute the excess workload of n :

2. sort the submitted workloads in ascending order

3. sort the assistant neighbours in descending order

4. L

i

i i i iLD c


 

et j=0

5. For a node n in N

 a. compute the excess workload n can receive =(l -l) c

 b. If w(wl) and F is in FS then

 1) k= k+1

 2) send message to node n , , ,FS ,

j

j lower

j avg j j

k n

j i i i in l c









 "G",[,]

 else

 1) go to step 5

End For

End While

End Begin

F 

Fig. 3.4. Procedure LB.

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

95

Then, it sorts: 1) the set of assistant-neighbors lowerN in descending order
based on their effective-loads, and 2) the set of submitted workloads

(n)iWL in ascending order in accordance with the weight of each
submitted workload. The procedure also checks each node in the set

lowerN and computes how much a node can receive  (i.e. the workload
that a node can receive is equal to the difference between the
effective-load of a node and the average effective-load). The procedure
migrates only the workload that has weight less than or equal to  . This
step plays a key role in redistributing the excess workloads to the
assistant-neighbors in a way that ensures that the node who receives the
workload maintains the under-loaded status. The LB procedure is
terminated when the load difference of the caller heavily-loaded node
becomes negative. In other words, the procedure is terminated when the
node becomes under-loaded.

3.5. Experiments

3.5.1. Experimental Setting

To test our proposed approach, a discrete-event simulator have been
implemented using the SimJava [27]. We compare the performance of
our proposed approach with two of the most popular dynamic diffusion
approaches, the nearest neighbor algorithm [9] and the original
neighbourhood algorithm [18]. The comparison tests were based on two
parameters: the assigned-workloads and the number of nodes, and the
measurement of the performance of the algorithm was based on six
metrics: the throughput, the response time or the completion time, the
communication overhead, the movement cost, the makespan, and the
queue length. The experiments parameters, and their values are given
in Table 3.2.

Table 3.2. Parameters used in the simulations.

 Description Values
1 The assigned Workloads 1,000-10,000
2 The number of nodes in the system 100-1,000
3 The cluster size 1-64
4 The number of functions in the FS per node 1-20

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

96

For fairness of comparison, we have tested the three approaches on
random graphs (random scenario) generated via random generator. In the
random scenario, the generator will randomly distribute nodes with a
functional set associated with each node in the graph. As shown in
Table 3.2, maximum number of functions that each node can execute is
20. Since, in this research, we propose a two-stage approach (creating a
functional small world overall network and then run the
NeighborhoodLB on the created FSW) to improve the performance of
load-balance algorithm, the random graph, generated previously, will be
converted to FSW before executing our proposed NeighborhoodLB
algorithm. On the other hand, the other two algorithms, the nearest
neighbor algorithm and the original neighbourhood algorithm were
executed directly on the generated random graph since they do not
employ the first stage of creating FSW.

Only one parameter was changed each time so that any changes in the
performance would be based solely on this parameter. In fact, results
achieved from these tests were used to study: (1) the behavior of the
different load-balancing algorithms under the same condition; (2) the
behavior of the algorithms for random systems with different number of
nodes; (3) the behavior of the algorithms for different workloads
distribution.

To study the effects of changing the assigned workloads on the average
response time, the throughput, the communication overhead, the
movements cost, the makespan, the queue length, the assigned
workloads were varied from 1000-10,000 workloads unit, and the
workloads distribution among the nodes were carried in the
following manner.

 The initial workload distributions varying 25 % from the average
effective-load to represent a situation where all nodes have similar
workloads at the beginning and those workloads are close to the
average effective-load; in other words, the initial situation is
quite balanced.

 The initial workload distributions varying 50 % from the average
effective-load to constitute the intermediate situations.

 The initial workload distributions varying 75 % from the average
effective-load to constitute the advanced intermediate situations.

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

97

 The initial workload distributions varying 100 % from the average
effective-load to form the situation where the difference of workloads
between nodes at the beginning is considerable.

To study the effects of changing the number of nodes on the average
response time, the throughput, the communication overhead, and the
movements cost, the number of nodes were varied from 100-1000 nodes
and the distribution of the overloaded nodes were carried in the
following manner.

 25 % of nodes are idle, 75 % of nodes are overloaded.

 50 % of nodes are idle, 50 % of nodes are overloaded.

 75 % of nodes are idle, 25 % of nodes are overloaded.

3.5.2. Comparative Study

3.5.2.1. Average Response Time

The total time taken for the three algorithms, our proposed algorithm, the
original neighbourhood algorithm, and the nearest neighbor algorithm,
to complete the assigned workloads increased as the assigned workloads
was increased as shown in Fig. 3.5. This situation is expected as the more
workloads to be assigned, the longer it takes to complete all the assigned
workloads. However, it was observed that our proposed method (i.e. the
green line) performed better than both the nearest neighbor scheme and
the original neighbourhood algorithm in all cases. We can see that when
comparing the results of our proposed method and the original
neighbourhood algorithm (i.e. the red line) and the nearest neighbor
algorithm (i.e. the blue line), it is observed that the gap between these
three curves was widening as the assigned workloads was increased. This
shows that the method actually reduced the response time or the total
completion time by a considerable amount (greater speedup) in
comparison to the original neighbourhood algorithm and the nearest
neighbor algorithm as amount of workloads increased.

Fig. 3.5 also shows that the response time of the proposed method
(i.e. green line) slightly increased when the number of nodes was
increased. In contrast, the response time of the original neighbourhood
method (i.e. red line) and the nearest neighbor method (i.e. blue line)
sharply increased when the number of nodes was increased.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

98

Fig. 3.5. The response time of original neighbourhood approach, neatest
neighbor approach, and our approach for various number of nodes.

3.5.2.2. Throughput

As shown in Fig. 3.6, our method outperformed the original
neighbourhood algorithm and the nearest neighbor method in terms of
the system throughput in all assigned workloads distribution cases. We
can notice that the throughput of the system that executes our proposed
approach steadily increased even the assigned workloads increased,
whereas the throughput of the system that execute the original
neighbourhood approach or the nearest neighbor approach drops quickly
when the assigned workloads increased.

Fig. 3.6. The throughput of original neighbourhood approach, neatest neighbor
approach, and our approach for various assigned workloads.

Fig. 3.6 shows that the throughput achieved by the original
neighbourhood algorithm as well as the nearest neighbor approach
decreased sharply as the number of nodes in the system increased, while
the throughput achieved by our proposed method remains stable even
when increasing the number of nodes.

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

99

3.5.2.3. Communication Overhead

Fig. 3.7 shows that the average number of messages sent per node
increased when the assigned workloads increased. This is because when
the assigned workloads increased, the number of messages sent per a
node to broadcast its new status increased. We can see that our proposed
approach produces less communication overhead than both the original
neighbourhood approach and the nearest neighbor approach even when
increasing the assigned workloads. Moreover, Fig. 3.7 shows that the
average number of messages sent per node increased when the number
of nodes increased. This is because when the number of nodes increased,
each node will send more messages to broadcast its information to the
other nodes.

Fig. 3.7. The average number of messages sent per node of original
neighbourhood approach, nearest neighbor approach, and our approach

for various number of nodes.

3.5.2.4. Movement Cost

Fig. 3.8 shows the movement cost of original neighbourhood approach,
the nearest neighbor approach, and our proposed approach vs. the
assigned workloads, where the movements cost is defined as the total
migrated workloads divided by the total assigned workloads in the
system. Clearly, the movements cost of our proposed approach is only
0.32 times the cost of the original neighbourhood approach, while the
movements cost of our proposed approach is only 0.34 times the cost of
the nearest neighbor approach.

Fig. 3.8 shows the movement cost of original neighbourhood approach,
the nearest neighbor approach, and our proposed approach. We can see
that the movements cost of our proposed approach is only 0.33 times the

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

100

cost of the original neighbourhood approach, while the movements cost
of our proposed approach is only 0.30 times the cost of the nearest
neighbor approach.

Fig. 3.8. The movements cost of original neighbourhood approach, nearest
neighbor approach, and our approach for various assigned workloads.

3.5.2.5. Makespan

Fig. 3.9 shows the makespan of original neighbourhood approach, the
nearest neighbor approach, and our proposed approach vs. the assigned
workloads, where the makespan is defined as the maximum load
assigned to a node. Our goal is to assign the load to a node in order to
minimize the average makespan. Clearly, the makespan of our proposed
approach is only 0.22 times the makespan of the original neighbourhood
approach, while the makespan of our proposed approach is only
0.25 times the makespan of the nearest neighbor approach.

Fig. 3.9. Makespan of original neighbourhood approach, nearest neighbor
approach, and our approach for various assigned workloads.

Additionally, Fig. 3.9 shows the makespan of original neighbourhood
approach, the nearest neighbor approach, and our proposed approach for
various number of nodes. We can see that the makespan of our proposed
approach is only 0.30 times the cost of the original neighbourhood

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

101

approach, while the makespan of our proposed approach is only
0.24 times the cost of the nearest neighbor approach.

3.5.2.6. Queue Length

Fig. 3.10 shows the queue length of original neighbourhood approach,
the nearest neighbor approach, and our proposed approach vs. the
assigned workloads, where the queue length is defined as the number of
waiting requests (assigned loads). Our goal is to assign the load to a node
in order to minimize the queue length. Clearly, the queue length of our
proposed approach is only 0.22 times the queue length of the original
neighbourhood approach, while the queue length of our proposed
approach is only 0.25 times the makespan of the nearest neighbor
approach.

Fig. 3.10. Queue length of original neighbourhood approach, nearest neighbor
approach, and our approach for various assigned workloads.

Fig. 3.10 shows the queue length of original neighbourhood approach,
the nearest neighbor approach, and our proposed approach for various
number of nodes. We can see that the queue length of our proposed
approach is only 0.30 times the cost of the original neighbourhood
approach, while the queue length of our proposed approach is only
0.24 times the cost of the nearest neighbor approach.

3.5.3. Results and Discussion

Results show that our proposed approach dramatically outperforms the
original neighbourhood approach, and the nearest neighbor approach in
terms of response time, throughput, communication overhead,
movements cost, makespan, and queue length.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

102

The reasons behind achieving better results are: 1) Constructing the FSW
allows only nodes with similar functionality to communicate with each
other. Thus, FSW reduces the possibility of re-migrating tasks
(re-migrating tasks consumes time). 2) Our approach reduces the number
of nodes that exchange the workload information, decreases the network
diameter, and minimizes the communication overhead. Thus, the time of
performing the proposed algorithm will be reduced, such as updating the
information of the neighbor nodes, calculating the average
effective-load, choosing the assistant neighbors, and migrating tasks to
the assistant neighbor. 3) Our proposed approach utilizes the on-state
information exchange strategy to broadcast its information to only its
neighbor-nodes, which has the advantages of achieving more accurate
calculation to the effective-load and the average effective-load without
increasing the communication overhead (i.e. each node collects the
information from less nodes, only neighbor nodes, as compared with the
original neighbourhood approach and the nearest neighbor approach).
4) Utilizing the concepts of assistant-neighbors allowing only heavily
loaded nodes to send only (i.e. without accepting any workloads from
other nodes since the node is currently overloaded) the excess workloads
to the lightly loaded nodes assistant-neighbors. Also, the lightly loaded
nodes will only receive the migrated workloads without sending any
workloads. 5) Our proposed algorithm calculates the average
effective-load to decide whether a node itself is overloaded or not.
Specifically, the importance of the average effective-load appears when
deciding the amount of workloads to be migrated; if the migrated
workloads to one node is too small, then the number of workloads that
will be migrated will be high (i.e. which in turn increasing the
movement costs).

3.6. Conclusion

We propose an approach that improves the performance of
load-balancing algorithms by considering the load-balancing
technical-factors and the structure of the network executes the algorithm.
We present the design of an overlay network, namely, Functional Small
World (FSW) that facilitates efficient load-balancing in heterogeneous
systems. The FSW achieves the efficiency by reducing the number of
nodes that exchange their information, deteriorating the network
diameter, minimizing the communication-overhead, and decreasing the
time-delay results from tasks re-migration process. We propose an
improved load-balancing algorithm that will be effectively executed

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

103

within the constructed FSW, where nodes consider the capacity and
calculate the average effective-load. We compared our approach with
two significant diffusion methods presented in the literature. The
simulation results indicate that our approach considerably outperformed
the original neighbourhood approach and the nearest neighbor approach
in terms of response time, throughput, communication overhead, queue
length, makespan, and movements cost.

References

[1]. H. Hsiao, I. C. Society, H. Liao, S. Chen, K. Huang, Load balance with
imperfect information in structured peer-to-peer systems, IEEE
Transactions on Parallel and Distributed Systems, Vol. 22, Issue 4, 2011,
pp. 634-649.

[2]. A. Abdelmaboud, D. N. A. Jawawi, I. Ghani, A. Elsafi, B. Kitchenham,
Quality of Service approaches in cloud computing: A systematic mapping
study, J. Syst. Softw., Vol. 101, December 2014, pp. 159-179.

[3]. H. S. Chwa, H. Back, J. Lee, K.-M. Phan, I. Shin, Capturing urgency and
parallelism using quasi-deadlines for real-time multiprocessor scheduling,
J. Syst. Softw., Vol. 101, March 2015, pp. 15-29.

[4]. J. Luo, L. Rao, X. Liu, Temporal load balancing with service delay
guarantees for data center energy cost optimization, IEEE Trans. Parallel
Distrib. Syst., Vol. 25, Issue 3, 2014, pp. 775-784.

[5]. G. Cybenko, Dynamic load balancing for distributed memory
multiprocessors, J. Parallel Distrib. Comput., Vol. 7, Issue 2, 1989,
pp. 279-301.

[6]. Y. Fang, L. Wang, An algorithm of static load balance based on topology
for MPLS traffic engineering, in Proceedings of the International
Conference on Information Engineering (ICIE’09), 2009, pp. 26-28.

[7]. Y. F. Hu, R. J. Blake, An improved diffusion algorithm for dynamic load
balancing, Parallel Comput., Vol. 25, Issue 4, Apr. 1999, pp. 417-444.

[8]. E. Luque, A. Ripol, A. Cortes, T. Margalef, A distributed diffusion method
for dynamic load balancing on parallel computers, in Proceedings of the
Euromicro Workshop on Parallel and Distributed Processing
(Euro-Pdp’95), 1995, pp. 43-50.

[9]. H. Tada, Nearest neighbor task allocation for large-scale distributed
systems, in Proceedings of the 10th International Symposium on
Autonomous Decentralized Systems (ISADS’11), 2011, pp. 227-232.

[10]. C. Hui, S. T. Chanson, A hydro-dynamic approach to heterogeneous
dynamic load balancing, in Proceedings of the International Conference
on Parallel Processing (ICPP’96), 1996, pp. 140-147.

[11]. C.-C. Hui, S. T. Chanson, Theoretical analysis of the heterogeneous
dynamic load-balancing problem using a hydrodynamic approach,
J. Parallel Distrib. Comput., Vol. 43, Issue 2, June 1997, pp. 139-146.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

104

[12]. C. Hui, S. T. Chanson, Hydrodynamic load balancing, IEEE Trans.
Parallel Distrib. Syst., Vol. 10, Issue 11, 1999, pp. 1118-1137.

[13]. A. Y. Zomaya, S. Member, Y. Teh, Observations on using genetic
algorithms for dynamic load balancing, IEEE Trans. Parallel Distrib.
Syst., Vol. 12, Issue 9, 2001, pp. 899-911.

[14]. E. Y. Daraghmi, S.-M. Yuan, A small world based overlay network for
improving dynamic load-balancing, J. Syst. Softw., Vol. 107, September
2015, pp. 187-203.

[15]. E. Y. Daraghmi, S.-M. Yuan, We are so close, less than 4 degrees
separating you and me!, Comput. Human Behav., Vol. 30, January 2014,
pp. 273-285.

[16]. M. E. J. Newman, D. J. Watts, S. H. Strogatz, Random graph models of
social networks, Proceedings of Natl. Acad. Sci. USA, Vol. 99, Issue 1,
2002, pp. 2566-2572.

[17]. D. J. Watts, S. H. Strogatz, Collective dynamics of ‘small-world’
networks., Nature, Vol. 393, Issue 6684, June 1998, pp. 440-442.

[18]. P. Neelakantan, Decentraized load balancing in heterogeneous systems
using diffusion approach, Int. J. Distrib. Parallel Syst., Vol. 3, Issue 1,
2012, pp. 229-239.

[19]. H. Meyerhenke, Dynamic load balancing for parallel numerical
simulations based on repartitioning with disturbed diffusion, in
Proceedings of the 15th International Conference on Parallel and
Distributed Systems (ICPADS’09), 2009, pp. 150-157.

[20]. J. E. Boillat, Load balancing and Poisson equation in a graph, Concurr.
Pract. Exp., Vol. 2, Issue 4, 1990, pp. 289-313.

[21]. R. Elsässer, B. Monien, S. Schamberger, G. Rote, Toward optimal
diffusion matrices £, in Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’02), 2002, pp. 1530-2075.

[22]. J. M. Bahi, F. Vernier, B. Cedex, Synchronous Distributed Load Balancing
on Totally Dynamic Networks, in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS’07), 2007,
pp. 1-8.

[23]. A. Vatsa, P. Bedi, Load balancing on dynamic network using mobile
process groups, in Proceedings of the 15th International Conference on
Advanced Computing and Communications (ADCOM’07), 2007,
pp. 553-558.

[24]. C. P. J. Adolphs, P. Berenbrink, V. A. Canada, Distributed selfish load
balancing with weights and speeds categories and subject descriptors, in
Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC’12), 2012, pp. 135-144.

[25]. A. Tversky, Features of similarity, Psychol. Rev., Vol. 84, Issue 4, 1977,
pp. 327-352.

[26]. K. Y. K. Hui, J. C. S. Lui, D. K. Y. Yau, Small-world overlay P2P
networks: Construction, management and handling of dynamic flash
crowds, Comput. Networks, Vol. 50, Issue 15, October 2006,
pp. 2727-2746.

Chapter 3. A Small World Load-Balancing Approach for Queues Based Systems

105

[27]. F. Howell, R. Mcnab, SimJava: A discrete event simulation library for
Java, in Proceedings of the International Conference on Web-Based
Modeling and Simulation, 1998, pp. 51-56.

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

107

Chapter 4

Error Model Identification of Data
Acquisition Systems by Nonstandardized
Test Signals

Linus Michaeli and Jan Šaliga4

4.1. Introduction

In general the data acquisition systems (DAQ) acquire analog and digital
signals from the observed environment and their transformation into the
digital form suitable for the control computer. The DAQ designed to
process only analogue signals will be studied in this chapter. These
DAQs consist of two blocks in the cascade: input analog pre-processing
blocks (APB) at the input and analog to digital converter (ADC) at the
output. APB adapts the input analogue signal to the input range and
operational mode of ADC. Here the analog signal is sampled in time and
converted into the digital code, suitable for processing by the control
computer. The acquired analog signals are potentially impacted by
various interfering error sources, while digital signals can be distorted
only by the rough faults in the processing phase. Optimal digital signal
processing suppresses potential quantization and sampling errors in the
conversion process. While ADC determines the stair-like character of the
whole transfer function of DAQ, the nonlinear errors are mainly
introduced in the APB.

Linus Michaeli
Faculty of Electrical Engineering and Informatics, Technical University of Košice,
Košice, Slovakia

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

108

4.2. Selected DAQ Error Parameters and Their Testing

The transfer function in the stair-like form describes the relation between
the analog input signal x and the output digital code bin k with 2N possible
values. (Fig. 4.1). Here, number of bits N determines resolution of DAQ.
Minimal xmin and maximal xmax values of the input signal x determine the
full scale range (FSR) FSR = xmax – xmin. The transition code level T(k) is
determined by the code change from k to (k + 1). For ideal ADC the
difference between adjustment T(k) and T(k + 1) is constant for any k
within FSR. The difference is called ideal code bin width or quantization
step (Q). The output DAQ codes k are usually expressed by different
binary representations [2].

Fig. 4.1. Transfer characteristic of DAQ.

4.2.1. Basic DAQ Parameters

The basic quantization error of transfer function is caused by the
rounding operation in ADC. The rounding is performed by assigning
analog input value x to nearest transition code level T(k). Nonlinearity of
APB influences the position of T(k) in real DAQ. The stair-like character
of the whole DAQ transfer function requires testing procedures
consistent with the approaches defined for ADC.

In the real DAQ, the transition between adjacent codes due to noise
induced into analog blocks is described by the function of probability of

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

109

occurrence of individual codes Pk(x) symmetric around the real transition
code level T(k). The deviations of the real transition code levels T(k)
from the ideal ones Tid(k) in the stair-like characteristic are described by
functional error parameters such as the differential nonlinearity of
DNL(k) and the integral nonlinearity of INL(k).

      1T k T k Q
DNL k

Q

  
 ,

      
0

().
k

id

i

T k T k
INL k DNL i

Q 


  (4.1)

Because of the functional parameter complexity the numerical error
characteristics are more suitable for characterization in datasheets.
Therefore DNL and INL are usually expressed in datasheets only by their
maximal values.

Signal to noise and distortion ratio (SINAD) and Effective number of bits
(ENOB) belong to the most frequent numerical error characteristics. The
SINAD is defined as the ratio of the effective value of basic harmonic
component to noise rms and distorting harmonic components Krms(f)
where ffin.

  
 2 2

20.log , [],

in

rms in

rms rms
f f

K f
SINAD dB

K f



 

 (4.2)

where rms is the total noise of real DAQ, which consists of the APB
noise and the quantization noise of real ADC caused by the rounding
operation. The increase in noise of APB reduces the ability of the DAQ
to distinguish between individual levels. The effective number of bits
represents the number of bits of DAQ which are reliable.

 

2

2 2

2

log

1.76
log 12 ,

6.02
in

rms

eq

rms rms
f f

ENOB N

K f
SINAD

N
Q







 




  


 (4.3)

where eq is the quantization noise of ideal DAQ with noise-less APB. It

can be proved that eq = Q/12. Parameter ENOB shows that the

increase of the resolution N of DAQ without suppression of noise and

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

110

nonlinear distortion in analogue pre-processing circuit is purposeless. On
the other hand, the number of N bits does not say much about the DAQ
quality.

Offset and gain errors belong to the numerical error characteristic and
describe basic coefficients of the interpolated transfer function by
straight line. The terminal definition of offset and gain error is based on
the assumption that transition code levels at both ends of FSR are
identical with the ideal ones      1 ; and 2 1 2 1N NT Q T Q    . Then

gain G and offset Uoff of real transfer characteristic are defined as
follows:

  off

(2 2)
 , 1 . (1).

(2 1) (1)

N

idN

Q
G U T G T

T T


  

 
 (4.4)

There are many others error parameters describing error features of DAQ
which are important for the special implementation. They include
dynamic error parameters or parameters describing possible errors in
monotonicity of transfer function. More detailed list of error parameters
are presented in the standards [1, 3].

4.2.2. Standardized DAQ Testing Methods

Testing methods of whole DAQ are almost identical with those for ADC.
According to standards [4, 5] the testing methods are categorized in two
groups; static and dynamic.

Static tests use known calibrated DC voltages at the input of DAQ under
test. The voltages must be set up close above and below the expected
T(k) under test. The automatic test procedure evaluates the statistics of
the occurrence of mutually adjacent codes for both voltages. The value
of measured T(k) is calculated by linear interpolation as voltage where
the occurrence probability of both code k and (k + 1) is the same.

The alternative static testing method utilizes feedback from the output of
digital comparator comparing the chosen code k and the DAQ output.
The comparator output controls the analogue integrator generating
triangular voltage feeding the DAQ input. The generated triangular wave
is centered around the real transition code voltage T(k) and it is measured
by an accurate DC voltmeter.

Dynamic DAQ test methods are performed by alternating testing voltage
with the metrological precision corresponding to the resolution of tested

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

111

DAQ. The common test stand is shown in Fig. 4.2. The highest
achievable accuracy is the reason why standards for dynamic testing
consider harmonic signal as appropriate testing signal only [3].
Nonlinear distortion of testing signal can be suppressed by an additional
low pass filter. Requirements on the harmonic distortion suppression
increase proportionally to the DAQ resolution. The peak value of the
testing harmonic signal can be measured by a calibrated AC voltmeter.

Fig. 4.2. Block diagram for dynamic testing.

The dynamic DAQ testing methods are:

 The FFT test method (analysis in frequency domain);

 The method of the best fitted sinewave (analysis in the time domain);

 The histogram test (statistical analysis).

Digital data from the output of tested DAQ are registered and processed
in the control computer. High frequency components generated by the
DAQ nonlinearity are evaluated by transformation of the output signal
into the spectral domain within the FFT test method. The ratio between
the effective value of high frequency components together with
background noise and the effective value of the basic component allows
determining numerical parameters including ENOB, SINAD, etc.

The best fitted sinewave is based on fitting testing sinewave digitized by
DAQ by the least square or maximum likelihood estimation. The
deviation between the fit and record samples is supposed to be the
distortion signal, which is used to calculate error.

The histogram test provides information about occurrence of chosen
code bins k in the output record as compared to the ideal histogram. The
ratio between both values is proportional to the differential and integral
nonlinearities.

ADI under
test

Testing signal
generator

Control
computer

Band-
pass

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

112

Selection of testing sine wave frequency and sampling frequency is very
important. The evaluation of the DAQ transfer characteristic is more
accurate for the increasing amount of the output samples, representing
each output code. The sampling of a periodic waveform such that the
total number of samples M in the data record, correspond to an integer
number of cycles J of the input waveform. In order to use the fast Fourier
transform algorithm the number of the cycles J should be a power of 2.
Coherent sampling requires satisfying the following relationship [1, 2].

 ,Sopt inJ f M f   (4.5)

where fSopt is the optimal sampling frequency and fin is the testing sine
wave frequency. Parameters J and M should be mutually relative prime
numbers. Two integers are relatively prime, when their ratio is
irreducible; i.e., their greatest common divisor is 1. The fulfilment of this
condition is possible by a phased locked loop. In the reconstructed
course, monotonicity and impulse failure are manifested. The sources of
these errors are the missing codes, noise and hazards in DAQ transfer
characteristic. In addition to random errors, systematic errors are
represented by nonlinearities and offset and gain errors.

The reader can find detailed information about standardized test
procedures in [2] and [3].

Standardized test procedures require calibration generators and
measuring instruments with high metrological precision and they are
time-consuming. Moreover, according to general metrological rules the
testing instruments must not be used for other tasks. The metrological
requirements imposed on these laboratories increase exponentially with
the resolution N of the digital output. In particular, DAQs with more than
16 bits require specialized test laboratories. On the other hand not all
DAQ error parameters are required by all end-users.

The alternative to standardized test methods are methods based on error
models. Error models describe DAQ using typical error behavior in
signal conversion. The testing methods based on the error model
identification seem to be more advantageous in comparison to the
standardized ones.

This testing approach is similar to that used by an experienced operator
of a measuring instrument. Knowledge of instrument behaviors – its
error model – helps operators to select the important points in the

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

113

operating range of a utilized instrument for the recognition of
characteristic error values. DAQ can be tested by the signal, which is
easily generated with required precision. The estimation of the error
parameters from the specific measurement corresponds to the
identification of error model parameters and belongs to the
non-standardized testing procedures.

Because of increasing resolution and quality of DAQ, end-users may
focus on the dominant error sources in the chosen error models. The
non-standardized DAQ testing procedures allow performing the test
faster and by general purpose laboratory instruments.

4.3. Testing of DAQ Based on the Error Model
Identification

Error models of DAQ represent a comprehensive, yet concise tool
presenting the impact of the real APB together with ADC at the output
of whole DAQ as crucial component determining the metrological
quality of the signal conversion between analog and digital domains. The
functional error parameters are the necessary basis for designing any
proper error model.

Identified error models of DAQ are suitable for:

 Description of real DAQ in CAD simulators as a subcircuit for the
assessment of uncertainty of the whole system and for the evaluation
of the implemented post-correction procedure [22].

 Estimation of integral error parameters of DAQ, such as THD,
SINAD, ENOB etc. by simulation for any stimulus signal [4, 5].

 Implementation of those in the post-processing procedures with the
focus on the suppression of systematic errors in the acquired signal
[6].

4.3.1. Error Models

Error models can be classified into two main groups: architecture
dependent models and behavioral error models (Fig. 4.3).

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

114

Fig. 4.3. Classification of the DAQ error models.

The architecture depended model comes from knowledge of the DAQ
internal architecture. Behavioral models are based on known errors in
conversion process without relation to hardware realization of DAQ.

4.3.2. Architecture Depended Models

The most accurate architecture dependent models utilize electrical
modelling on the circuit-level. These models comprise circuit
components, interconnections among them and utilized technology with
its impact on the component parameters. Resultant models are included
in the Computer Aided Design (CAD) software tools.

Structural error models describe DAQ error characteristics through
simplified equivalent circuits or functional blocks. They represent a
compromise between accuracy resulting from the circuit level
description and simplicity based on knowledge about hardware blocks
influencing dominantly error parameters. While static models
characterize the converter under a constant input signal, the dynamic
models consider an input signal with constant slope s. Time variation in
the input signal is often suppressed by the sample and hold circuit at the
input of ADC or by short time conversion.

The deviations of transition code level T(k) in the final transfer
characteristic are manifested by patterns in the resulting straight-line
characteristic and they are caused by the DAQ architecture. Analog
processing of input signals x is a common feature of any DAQ
architecture. Various modifications of integration ADCs in DAQ convert

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

115

linearly output from APB into the intermediate frequency fx or period Tx
of the pulse signal. Integrating ADCs may operate also with multiple
slopes. Various versions of ∑ ADCs represent an alternative type of
integrating ADCs. Conversion into frequency or period is performed by
the analog circuit blocks. All signal operations here are impacted by
continuously distributed error. The output code k is achieved by the
digital counter of frequency fx or time period Tx. The clock frequency
shift is only one possible error source in the digital counter and it can
influence the gain of ADC only. The optimal analytical error function of
integrating ADCs is represented by polynomial of L-the order.

Compensating ADCs represent the second group of ADC architectures.
Here the output signal from APB is converted into the digital code k by
compensating – weighting principles. Examples of compensating
structure are successive approximation, pipeline or various
modifications of cyclic ADCs. Their main advantage is faster conversion
in a few steps in comparison with the previous group. Inaccuracy of the
compensating weighting voltages generated by DAC in the feedback has
an additional impact on the error characteristic. The compensation
principle determines the prevalent non-continuous error function pattern
characteristic for a specific type of compensating ADCs. Characteristic
error patterns are superimposed to the continuous error component
caused by APB in the final error function.

Conversion structure where each code level is determined by a different
component is typical for parallel ADCs. Conversion speed is the main
advantage of these ADCs. The error sources in the ADC structure are not
apparent with the regular causalities in the error functions. Rough and
accurate conversion in few steps is a certain modification of the parallel
structure.

Table 4.1 shows prevailing error characteristics of main representatives
of ADC architectures utilized as an output block of any DAQ [4, 6,
8, 10].

4.3.3. Behavioral Error Models

The input-output characterization of the transfer characteristic by the
behavioral model meets the main goal of error modelling – simplified
description of error characteristic over FSR. Architecture based models
allows to choose optimal behavioral description of the error model.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

116

Table 4.1. Prevalent functional error characteristics of ADCs.

ADC architecture
Prevalent functional
characteristic

Full-Flash ADCs
(one step conversion cycle)

Random function

Integrating ADCs, (one, dual slope), 
ADCs, Voltage to Frequency Converters

Polynomial function

N-bit Successive approximation ADCs
Rademacher function with N
code frequencies

Pipeline ADCs, Cyclic Flash ADCs,
with R-cycles

Periodical function with R
code frequencies.

The simplest way of the behavioral error model is the look up table [12].
It is represented by the table where the code k from the DAQ is its input.
The measured values of INL(k) or DNL(k) by the standardized tests are
the outputs. The look up error model contains 2N data among which many
are redundant. Requirement on the memory capacity is one drawback of
the model implementation in digital signal post processing. The look-up
table contains error parameters for all code bins, which are measured by
the standardized testing procedures. Such huge amount of memorized
data does not provide the main benefit of error modelling, which is the
concentrated description of the major error parameters.

4.3.3.1. Unified Error Model

The progress in the electronic technology is aimed at suppression of error
sources in the analog blocks and reduction of errors caused by the
process of analog to digital conversion. Custom design of DAQ by a
system integrator particular application utilizes various components of
different producers and it is implemented under specific operational
conditions. A limited possibility how to reduce parasitic influence of
external error sources (temperature, operational conditions of the analog
parts, etc.) and interfering parasitic sources requires final error testing.
The evaluated error model description in the mathematically concise
form is a suitable tool for data correction by digital processing. The
optimal form to describe error function is a unified error model of DAQ.
It expresses the error function as one dimensional image of the code
which consists of two components [13]:

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

117

a) The low code frequency component (LCF), which is represented by
the polynomial approximation LCFINLm(k) of L-th order. The
approximation of the polynomial function is obtained from the
measured INL(k) values in the L1 nodal points
k<k1,k2,..,kL1

>. The most suitable approximation uses the Least

Squared approximation.

b) The high code frequency component (HCF) HCFINLm(k) is formed by
significant deviations of the differential nonlinearities DNLm(k) from
the mean value. The code bins with significantly different
nonlinearities have both the regular occurrence of the modeled
values of DNLm(k), and a random appearance. The periodical
occurrence of nonlinearities is based on the ADC structure. The HCF
component is able to cover even the nonlinearities out of the regular
occurrence. It allows to model nonlinearities DNL(k) which
significantly exceed the average differential nonlinearity over the
whole FSR.

The shape of the integral nonlinearity using both components can be
modeled as follows:

     

 0 1
0

.. .

LCF HCF
m m m

k
L HCF

L m
i

INL k INL k INL k

a a k a k DNL i


 

    
 (4.6)

While the component LCFINLm(k) represents the continuous nonlinearity
of the DAQ, the superimposed HCFINLm(k) component describes major
discontinuities in the nonlinear function. The measurement of
differential nonlinearities DNL(k) by a histogram is the easiest way how
to estimate HCFINLm(k) component.

Behavioral error models using close mathematical formulas are based on
Chebyshev´s series or sum of harmonic functions associated with code k
[18, 19]. Drawback of such models is hard requirements for
identification of the error model parameters. The identification requires
harmonic testing signal with metrological quality in a wide
frequency range.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

118

4.3.3.2. Error Model Identification Using Nonstandardized
Signals

The main advantage of the testing method based on the unified error
model identification is a possibility to use the testing signal with the
reduced amplitude and adjustable offset. The amplitude reduction results
in the proportional reduction of nonlinear distortion of the testing signal.
This way, the general-purpose laboratory generators of triangular voltage
can meet metrological requirement for testing signal. The error function
is measured by the repetition of histogram tests in successive sections
along FSR. Moreover, appropriate selection of FSR segments allows to
estimate dominant characteristic patterns in the HCF error component or
LCF errors in the crucial points of FSR.

The conceptual block diagram of the testing generator, which meets the
requirement of all testing steps is shown in Fig. 4.4. Triangular voltage
source results in the simplest mathematical formulas. The peak-to-peak

value of triangular testing signal is reduced by the R2/(R3||R1) ratio and

offset X0 by the R1/(R3||R2) ratio, respectively.

Fig. 4.4. Block diagram of stimulus signal generator with reduced amplitude.

Before the test with reduced triangular signal the preliminary histogram
test with triangular signal of peak-peak value over FSR must be
performed. The goal of this first rough test is to estimate code bins kH
with an extreme value of the DNL(kH). Moreover the selection of code
bins kL less influenced by the remarkable discontinuities in INL shape
has to be performed. The discontinuities around the code bins kL increase
the uncertainty of the LCFINL(k) estimation. [13, 17].

In the second testing step the LCF component is measured by the
triangular signal with reduced peak-to-peak value Xpp around the DC

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

119

value X0. The rising half period of triangular signal with M1 samples can
be described by the following formula.

  
1

0
1

()2 .
pp

Mi X
x i X

M


  (4.7)

The mean value of the triangular voltage is adjusted using a DC generator
with an accurate DC voltmeter on the ideal transition code level
Tid(kL) = (kL + 0.5)Q (Fig. 4.2). Let’s implement integer number of
triangular signal periods J with total amount of M samples. In order to
achieve signal ergodicity, the number of periods J and samples M must
be mutually relative prime numbers. The histogram P(k) of the output
code k in case of an ideal transfer function is symmetrical around value

kL. The mean value Lk of the histogram measured for the real transfer
characteristic is shifted by the value of LCFINL(kL) from the ideal code
kL position.

  .LCF
L L Lk k INL k  (4.8)

The LCFINL(kL) is obtained from the mean value Lk from the ADC

output codes k for one testing sequence by

   .LCF
L L LINL k k k  (4.9)

The modelled LCFINLm(k) component along the FSR is estimated by the
L-th order polynomial approximation of measured LCFINL(kL) values in
L1 equidistant distributed code bins kL. The polynomial order L must be
lower than L1. Only X0 value is the parameter which must be known with
metrological accuracy using set-up in Fig. 4.2. Peak-to-peak value Xpp of
the input voltage must be stable during measurement LCFINL(kL) for one
code bin kL.

The third test step represents the estimation of the HCF component by
the histogram test with the same triangular voltage covering code bins kH
with remarkable differential nonlinearities. The code bins kH were
chosen in the first step. The differential nonlinearity of any code bin kH
is calculated from the histogram. If the number of samples in one testing

sequence is I, then the probability of kH in the ideal case is QI/XPP
. Let’s

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

120

suppose that the occurrence of samples with value kH in the real
histogram is H(kH). The modelled differential nonlinearity in the code
bins kH is determined by the formula

  
()

() 1 .
H

PP PP
m H H

PP

QIH k X X
DNL k H k

QI QI
X


   (4.10)

Differential nonlinearities, below the remarkable value are neglected.
The setting of DC component ao = 0 allows to meet the condition of the
terminal definition INL(0) = 0 at the beginning of FSR. The linear
component in modelled INLm(k) is set to meet the second condition of
terminal definition INL(2N – 1) = 0. It covers even the situation, when the
sum of the modelled differential nonlinearities along the FSR is not
zero [2].

   2
1 2

0
()

()

.. ().
LCF

HCF

k
L

m L m
l

INL k
INL k

INL k a k a k a k DNL l


   


 (4.11)

An alternative test method is based on the use of the sinewave instead of
the triangular signal. The disadvantage of the sinewave is the need for
more complex mathematical formulas for calculation of both
components from the measurement results [15].

Another alternative to achieve the signal with accurate shape is the
simplest generating circuit without any active components [14]. A
discharging RC circuit generates high accuracy exponential signal. The
low dielectric absorption of the discharging capacitor secures that the
only dominant exponential component is generated. Multilayer organic
dielectric capacitors MLO™ are known by the extremely low dielectric
absorption (DA  0.0015 %) [21]. Even capacitors with teflon or
polypropylene dielectric (WIMA capacitors) allow to generate almost
ideal exponential signal. The histogram from the registered samples H(k)
and its analytical estimation for the best fitted exponential shape
determines the differential nonlinearity DNL(k) for any code level k is
another way how to meet the condition of ideal exponential pulse. The
principle of the stimulus signal generator with galvanic isolation from
the control unit is shown in Fig. 4.5.

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

121

ADC

C R
R IN

X X DC

Fig. 4.5. Circuit generating exponential stimulus signal.

The analytical expression describing the discharging voltage is

  IN .
t

RC
DC DCx X X X e


   (4.12)

The differential nonlinearity of DAQ under test is estimated from the
histogram of the registered samples using the well-known formula:

 ()
() 1 ,

()id

H k
DNL k

H k
  (4.13)

where H(k) is the actual number of samples received in code bin k, and
Hid(k) represents the number of histogram samples for ideal DAQ (13).
The data stream from the DAQ output in the ideal case (Fig. 4.6) is
represented by the formula:

  m.eround)(ABmx  , m = 0,…,(M-1). (4.14)

Coefficients B, A and  are defined by formulas

 1
; ; ,DC DC

S

X X X
B A

Q Q RCf


 
   (4.15)

where Q is the averaged code bin width and fS is the sampling frequency.
The mathematical operation round (.) round its argument to the nearest
integer number. Let’s the total number of acquired exponential samples
with values k   1, 2N – 2  be M. Then the number of histogram
samples in ideal case Hid(k) for the code bin k is determined by the
formula

    ln 1,...., 2 2
1

,Nk BM
H k for kid k B


  

 
 
 
 

 (4.16)

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

122

where N is the number of bits of DAQ. The parameters A, B and  can be
calculated by a fitting procedure from the acquired data using the Least
Square fitting method. It allows to suppress possible in the presence of
superimposed exponential components caused by residual dielectric
absorption of the discharging capacitor. The differential nonlinearity
DNL(k) is determined by (4.14) and the integral nonlinearity INL(k) can
be calculated by its summing (4.2).

Fig. 4.6. DAQ data record for exponential stimulus signal.

The accuracy of determining DNL and INL for each code bin k depends
on the number of samples M and on value B. The first estimation of a
minimal number of samples M for the required accuracy of DNL and for
the full-scale range of ideal ADC can be determined by:

  
ln() ln(2 1)

,
ln(2) ln(2 1)

N

N N

B B
M

B B
   


   

 (4.17)

where ε is the minimal required uncertainty of DNL in LSB [21].

The histogram test method by the unidirectional exponential stimulus
identifies the high code frequency component very effectively. On the
other hand it partially masks the low code frequency component. This
phenomenon is caused by the property of least mean square masking
local ripples in measured LCFINL(k). Periodical exponential stimulus with
both slopes (Bi-directional stimulus) prevents the above mentioned

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

123

masking effect and improves the accuracy of the histogram test method.
Another advantage of the periodical exponential stimulus signal with
both slopes is the symmetry of the acquired histogram around center of
the FSR. It creates a symmetrical cumulative histogram around the FSR
center. The proposed symmetrical exponential stimulus x(t) gives the
possibility to build it on chip as a sub-circuit for auto-testing.

Samples at both ends of the full scale range – FSR are difficult to define
by the exact analytical expression. The inaccuracies in the analytical
expression are caused by switching effects of the excitation rectangular
signal at the input of the forming RC circuit. Therefore the marginal code
bins should be excluded from the output data record for the histogram
processing.

Analytical expression for bidirectional exponential signal with known
values x(t1) = F2, x(t2) = F1, x(t3) = F1 and x(t4) = F2 of output voltage for
time instances ti, i = 1,..4 (Fig. 4.7) is

  
   

   

1

3

2 1 2

1 3 4

,

.
,

t t

f f

t t

r r

F B e B for t t t

x t
B B F e for t t t












    

   
        

 (4.18)

Fig. 4.7. Bi-directional exponential stimulus signal.

Here  is the time constant of the exponential signal. Thresholds F1 and
F2 represent a full-scale input range of DAQ under test and Br, Bf are the
final voltages of exponential signal for t  the rising and falling
sections of the exponential shape.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

124

The cumulative probability Pf(x), Pr(x) for the rising and falling sections
respectively can be derived from (4.1) for any value of  and B under the
condition Br > F2 and Bf < F1.

 

 

2 f
f f

2 1 1 f

3 r
r r

4 3 2 r

2 f 2 r
f

1 f 1 r

ln

ln .

1 ln , 1 ln

x

x

r

t t x B
P x D

t t F B

t t x B
P x D

t t F B

F B F B
D D

F B F B

 
    

 
  

  
 

  
  

 (4.19)

Let’s suppose that code bins k = 0 and k = (2N – 1) are excluded from the
output record. The utilized histogram for INL(k) and DNL(k) testing is
determined for (2N – 2) input voltages T(k) = (F1 + kQ), where Q is
averaged code with and k = 1, 2,…, (2N – 2). Ideal cumulative probability
Pid(k,Bfr) are determined by the analytical expression (4.19), where just
coefficients B are different for the falling and rising part.

  
1

1

2

1

ln

, .

ln

f r

f r
id f r

f r

f r

F kQ B

F B
P k B

F B

F B










 






 (4.20)

The consider number of samples with code value k acquired in the
histogram test is equal to H(k). The error resistant approach estimates
integral nonlinearity using the cumulative histogram from the output
record for the rising and falling section of bi-directional exponential
signal. It is more robust to the superimposed noise and harmonic
interferences. Let’s consider H(Bfr) is the total number of hits acquired
in code bins k = 1, 2,…, (2N – 2), separately for rising and falling section
in the recorded data. The acquired cumulative probability P(k,Bfr) from
the histogram testing for both sections is

  
 

 
1

2 2

1

,
, ,

,

for 1, 2, ..., 2 2 .

N

k

f r
i

f r

f r
i

N

H i B
P k B

H i B

k




 






 




 (4.21)

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

125

Parameters Bf and Br in (4.21) and (4.22) must be estimated by least mean
squared fit by ideal cumulative probability functions P(k,Bf) and P(k,Br)
from two separate histograms for rising and falling sections. Applying
individual independent estimation of Br, Bf constants will lead to two
different integral nonlinearities: INLr and INLf for the rising and falling
section of the acquired histogram:

    
 

 2

1

1

1

ln ,
,

1 1 .
,

ln

f r
c f r

f r f r
f r

f rid f r

f r

F B
P k B

P k B F B
INL k

F kQ BP k B
F B




 









   
 


(4.22)

Integral nonlinearity INL is an inherent parameter of ADC, and should
be the same for any slope of the test stimulus. Under this consideration
INLr and INLf have to be close to each other. Hysteresis of currently
produced ADCs is negligible. The only possible source could be
improper operational conditions and interconnection errors in the analog
processing block.

4.4. Experimental Results

The methods presented above were verified by experimental tests. The
equivalent standardized test procedure was taken for the reference test.
National Instruments DAQ boards were used as DAQ systems under test.
The results achieved by methods using the triangular test with reduced
peak-peak value and bidirectional exponential stimulus are
presented below.

The first experimentally verified method was the triangular test with the
reduced peak-peak value. The codes kH were chosen according to the
position of the highest discontinuities in INL(k) acquired using a
triangular testing signal overlapping FSR.

The LCF component was calculated by the least square algorithm using
the polynomial model (4.6) of the LCFINL(k) in the second step. The nodal
points utilized in the second step were chosen to determine LCF
component with the maximal accuracy. Two code values at both ends of
FSR were added. The total number of selected nodes for the tested DAQ
board (LAB-PC-1200) was nine (Fig. 4.8).

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

126

Fig. 4.8. Histograms for reduced peak-to-peak value triangular testing signal.

The triangular testing signal with the reduced peak-peak value equal to
30 code bins around kH was used in the third step. It allows to acquire
histograms determining DNL(kH) with higher accuracy. Fig. 4.8 presents
the obtained histograms from the triangular voltage with the reduced
peak-peak value. Fig. 4.9 shows the modelled HCF component of
integral nonlinearity HCFINLm(k) calculated for the chosen code bins kH.

Fig. 4.9. Resulted HCFINL(k) calculated from histograms in Fig. 4.8.

The final results of Lab-PC-1200 achieved by the proposed test method
are shown in Fig. 4.10. It consists of the LCF and HCF components and
it is compared with the INL obtained by the standardized method.

Fig. 4.10. INL(k) of LAB-PC-1200 modelled by the unified error model.
LCFINL(k) is modelled by polynomial of L = 4 order from 9 node points each
calculated from 5000 samples. The superimposed HCFINL(k) component was
estimated in the nodal points.

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

127

Integral nonlinearity testing by proposed unidirectional and bidirectional
exponential stimulus signal was verified for the multifunction data
acquisition module USB6009 with the 14-bit ADC resolution [13]. The
INL achieved by the standardized histogram testing method using
harmonic signal is shown in Fig. 4.11.

Fig. 4.11. INL measured by standardized harmonic stimulus histogram test.

The results for the periodical unidirectional and bidirectional exponential
stimuli are shown in Fig. 4.12a and Fig. 4.12b respectively. The ideal
cumulative probability and the measured probabilities were acquired
using formulas (20) and (21) for the total number of processed samples
M = 106. The difference between standardized harmonic stimuli
histogram tests and periodical unidirectional and bidirectional
exponential stimuli are shown in Figs. 4.13a and 4.13b respectively.

 (a) (b)

Fig. 4.12. INL measured by unidirectional (a) and bidirectional
(b) exponential stimuli.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

128

 (a) (b)

Fig. 4.13. Difference between standardized test method and INL testing results
measured by (a) unidirectional and (b) bidirectional exponential stimuli.

The difference between INL from the standardized sinewave test and
using exponential stimuli is smaller for the bidirectional exponential
shape. A higher difference for the unidirectional exponential signal is
caused by the decreasing number of hits in the processed histogram for
higher code levels. The residual error for the bidirectional stimuli is
caused by the imperfections in the generated exponential signal at both
ends of FSR.

The DAQ LAB-PC-1200 was utilized to compare the accuracy of INL
testing using triangular and exponential stimulus signal. The presence of
the exponential components caused by dielectric absorption was
suppressed by the selection of Teflon WIMA capacitors. The integral
nonlinearity INL was calculated from the measurement of DNL
measured by the histogram test for periodic bidirectional exponential
stimuli signal. The DAQ board has been set into the unipolar conversion
mode. The total number of processed hits was M = 106 (Fig. 4.14).

Fig. 4.14. INL(k) of LAB-PC-1200 measured from histogram test using
periodic bidirectional exponential stimulus signal.

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

129

The measured INL is similar as shown in the dashed graph Fig. 4.10.
Moreover, modelled INL shape in Fig. 4.10 follows the trend measured
by the full histogram test using bidirectional exponential stimuli. The
number of acquired samples M and corresponding long testing time is a
disadvantage of full histogram test by the exponential stimuli.

4.5. Conclusions

The system integrator within designing the DAQ block connects the
different circuit blocks produced by different manufacturers according
to the needs of a specific signal acquisition task. Testing the designed
DAQ system is the final phase of its system design. It requires specific
metrological equipment and laboratories. On the other hand, not all DAQ
error parameters are important for end users.

Identification of error model parameters using easily generated signals is
an option giving the system integrator or end user information about
metrological reliability of measured data and characteristic error features
of DAQ. It seems that the unified error model based on two components,
the continuous error function and the component describing periodically
or randomly occurring singularities covers almost all possible errors. The
continuous function of low code frequency with superimposed high code
frequency is a good balance between modelling accuracy and modelling
complexity. The proposed testing approach is also suitable for cyclic
autocalibration using testing subcircuit implemented on DAQ chip.

The chapter presents selected nonstandardized DAQ nonlinearity test
methods. The methods are based on the identification of unified error
model parameters. These can be measured using nonstandardized test
signals such as triangular and exponential ones. The ability of the
proposed method was verified by the experimental tests in comparison
with the standard test procedure. The test results based on the error model
identification proved good conformity with the ADC testing standards
and applicability in commonly equipped laboratories.

References

[1]. IEEE Standard for Digitizing Waveform Recorders, IEEE Std. 1057-2007,
Institute of Electrical and Electronics Engineers, New York, USA, 2007.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

130

[2]. IEEE Standard for Terminology and Test Methods for Analog-to-Digital
Converters, IEEE Std. 1241-2010, Institute of Electrical and Electronics
Engineers, New York, USA, 2010.

[3]. Semiconductor Devices-Integrated Circuits. Interface Integrated Circuits,
Dynamic Criteria for Analogue-Digital Converters, IEC Std. 60748-4-3,
International Electrotechnical Commission, 2006.

[4]. P. Arpaia, P. Daponte, S. Rapuano, A state of the art on ADC modelling,
Comp. Stand. & Interf., Vol. 26, Issue 1, 2004, pp. 31-42.

[5]. B. Vargha, J. Shoukens, Y. Rolain, Non-linear model based calibration of
A/D converters, in Proceedings of the 6th Euro Workshop on ADC
Modelling and Testing (EWADC’01), Lisbon, Portugal, September 2001,
pp. 79-83.

[6]. E. Balestrieri, P. Daponte, S. Rapuano, A state of the art on ADC error
compensation methods, in Proceedings of the IEEE Instrumentation and
Measurement Technology Conference (I2MTC’04), Vol. 1, 2004,
pp. 711-716.

[7]. S. Medawar, P. Händel, N. Bjorsell, M. Jansson, Input dependent integral
nonlinearity modeling for pipelined analog-digital converters, IEEE Trans.
on Instr. and Meas., Vol. 59, Issue 10, October 2010, pp. 2609-2620.

[8]. L. Michaeli, P. Michalko, J. Saliga, Unified ADC nonlinearity error model
for SAR ADC, Measurement, Vol. 41, Issue 2, 2008, pp. 198-204.

[9]. S. Haenzsche, S. Henker, R. Schuffny, Modelling of capacitor mismatch
and non-linearity effects in charge redistribution ADCs, in Proceedings of
the 17th Int. Conference on Mixed design of Integrated Circuits and
Systems (MIXDES’10), June 2010, pp. 300-305.

[10]. S. B. Mashhadi, S. I. Pishbin, Efficient modeling and analysis of
switch-induced error voltage in high resolution SAR ADCs, in
Proceedings of the 18th IEEE International Conference on Electronics,
Circuits and Systems (ICECS’11), 2011, pp. 208-211.

[11]. F. Centurelli, P. Monsurrò, A. Trifiletti, Behavioral modeling for
calibration of pipeline analog-to-digital converters, IEEE Transactions on
Circuits and Systems I: Regular Papers, 2010, pp. 1255-1264.

[12]. H. Lundin, P. Händel, Look-up tables, dithering and Volterra series for
ADC improvements, Chapter 8, in Design, Modeling and Testing of Data
Converters, Signals and Communication Technology (P. Carbone, et al.,
Eds.), Springer-Verlag, Berlin, Heidelberg, 2014.

[13]. L. Michaeli, J. Šaliga, P. Michalko, Triangular testing signal for
identification of unified error model parameters, Measurement, Vol. 40,
Issue 5, 2007, pp. 491-499.

[14]. L. Michaeli1, J. Šaliga, M. Sakmár, J. Buša, Advanced ADC testing by
multiexpontial stimuli, in Proceedings of the XIX IMEKO World
Congress, Sept. 6-11, 2009, Lisbon, Portugal, pp.714-718.

[15]. A. Cruz Serram, F. Alegria, L. Michaeli, P. Michalko, J. Šaliga, Fast ADC
testing by repetitive histogram analysis, in Proceedings of the IEEE
Instrumentation and Measurement Technology Conference (IMTC’06),
2006, pp. 1633-1638.

Chapter 4. Error Model Identification of Data Acquisition Systems by Nonstandardized
Test Signals

131

[16]. S. Medawar, B. Murmann, P. Händel, N. Björsell, M. Jansson, Integral
nonlinearity modeling and calibration of measured and synthetic pipeline
analog to digital converters, IEEE Trans. on Instrumentation and
Measurement, Vol. 63, Issue 3, 2014, pp. 502-511.

[17]. C. Wegener, M. P. Kennedy, Linear model-based error identification and
calibration for data converters, in Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition (DATE’03), 2003,
pp. 630-635.

[18]. J. M. Janik, Estimation of A/D convertor nonlinearities from complex
spectrum, in Proceedings of the 8th International Workshop on ADC
Modelling and Testing (IWADC’03), Perugia, Italy, September 2003,
pp. 205-208.

[19]. F. Adamo, F. Attivissimo, N. Giaquinto, I. Kale, Frequency domain
analysis for dynamic nonlinearity measurement in A/D converters, IEEE
Trans. on Instrumentation and Measurement, Vol. 56, Issue 3, 2007,
pp. 760-768.

[20]. R. Holcer, L. Michaeli, DNL ADC testing by the exponential shaped
voltage, in Proceedings of the 18th IEEE Instrumentation and
Measurement Technology Conference (IMTC`01), Budapest, Hungary,
May 21-23, 2001, pp. 693-697.

[21]. E. Menendez, Dielectric Absorption of Multilayer Organic (MLO™)
Capacitors, Technical Papers, Kyocera Group Company, Online,
https://www.avx.com/docs/techinfo/RFMicrowaveThinFilm/MLO_Diele
ctric_Absorption.pdf

[22]. Mixed-Signal Design Forums, Verilog-A code for ADC,
https://community.cadence.com/cadence_technology_forums/f/mixed-
signal-design/31567/verilog-a-code-for-adc

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

133

Chapter 5

Affinity Aware Scheduler of Cluster
Virtual Nodes on Clouds

D. Yokoyama, V. D. Oliveira, M. Bandini, J. P. Barbosa, H. Kloh,
R. Pinto, V. Rebello and B. Schulze5

5.1. Introduction

5.1.1. Motivation

The increasing complexity of applications, particularly scientific
applications, associated with the need to manage large amounts of data,
is driving a growing demand for high performance and highly distributed
computing architectures, such as cluster computing, in order to obtain
solutions for these problems, within acceptable time constraints. The use
of both cluster computing and parallel processing allows for the
simulation and solving of complex problems which otherwise would not
be achieved.

However, cluster computing presents some barriers for its widespread
adoption, such as the complexity of applying large scale distributed
parallelism and the difficulty of accessing cluster resources, which is not
trivial for scientist in general areas of interest. Cloud computing emerged
as an alternative to deal with such issues, as it may reduce infrastructure
maintenance costs and provide easier ways to experiment and develop
parallel solutions [1].

Because of recent developments, such as hardware assisted virtualization
in x86 processors, the cloud computing model, although not new, is
attracting great interest from scientific communities. Cloud Computing
attempts to solve problems such as power consumption and allocation of
physical space in big data centers and Massively Parallel and
Distributed Computing.

D. Yokoyama
National Laboratory of Scientific Computing (LNCC), Quitandinha, Petrópolis, Brazil

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

134

Most existing cloud platforms depend heavily on virtualization of the
computing resources. Virtualization allows for: a reduction of equipment
purchasing costs, by taking advantage of underutilized facilities; a
greater flexibility by using the same hardware for a range of applications
running possibly on different operating systems; an increased stability
and environmental safety, since a failure in a virtual machine will not be
propagated to other virtual machines running on the same host.
Observing the listed benefits, it becomes clear why clouds depend
intrinsically on virtualization [2].

The increasing concern with the quality of services provided by cloud
providers motivates research focused on developing mechanisms and
methodologies to promote improvements in the way of allocating
applications in these resources [3]. In this context, by knowing the
resource consumption profile of applications, the virtualized
environments and the effects caused by competition contributes to these
efforts, in order to minimize performance losses.

Applications in clusters are comprised of largely homogeneous tasks
across distributed memory systems. These tasks, when isolated as virtual
machine instances in a cloud computing environment, present great
opportunities to analyze their relationship with other applications
submitted to the same host and to allocate them accordingly. Thus, the
objective of this work is to present an improved allocation of Virtual
Machines (VMs) in a cloud infrastructure in support to scientific
applications. This aims to reduce the costs of moving cluster computing
applications to cloud computing environments, as well as to mitigate
negative effects that arise from the competition for the same computing
resources in a virtual environment. Thus, the benefits of cloud
computing, such as scalability, elasticity and resource sharing, could be
used by a cluster computing infrastructure.

5.1.2. Methodology

Based on the analyses of the interaction of different applications with
different resource constraints, and through benchmarks and validation
via simulations, this work proposes a scheduling model to improve cloud
resource utilization. Currently the scheduling mechanism used in the
cloud does not take into account how applications affect the overall
system utilization, due to resource competition. This work proposes a
model that takes this interaction into account in order to maximize the
application throughput.

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

135

The co-allocation effect is measured throughout the execution of
benchmarks with different performance characteristics. The impact of
the hypervisor is overlooked by this allocation model. Although the type
of hypervisor can affect performance, cloud environments tend to use a
single Virtual Machine Monitor (VMM). To this end, the KVM
hypervisor is used as the VMM in all experiments. KVM was chosen
since it has shown to be well suited for applications that require intensive
processing, in some cases supplanting the real machine [4, 5].

Simulations are performed using some traditional scheduling strategies
and a proposed model based on affinities. These simulations have the
objective of validating the model. Following this experiment, an affinity
conscious scheduler is proposed.

Based on the benchmarks and simulation results, the work presents a
virtual machine scheduling algorithm to run Massively Parallel and
Distributed Computing applications with intensive usage of: CPU,
memory and IO. This scheduler uses two allocation techniques, the static
and the dynamic. These two techniques refer to when decisions are made.
In static scheduling, application profiles are previously known and, once
allocated, virtual machines are kept on the same physical machine until
the execution ends. However, in dynamic scheduling, one may not have
initial knowledge about the characteristics of the application, so the
profile of the resource usage may change during the execution. Also,
applications reach the scheduler at different times. When the scheduler
detects a behavior change in the application profile, it may decide to
migrate the virtual machines in order to avoid the performance dropping
of those sharing the same physical environment [6].

The work described is an extension of the research developed in [7] and
[8]. The remaining sections are: Section 5.2 – Problem Specification:
presents the relation between interference and affinity, detailing the
complexity of virtual machine instance allocation in cloud datacenters
and explaining the hypothesis under which this work was developed;
Section 5.3 – Affinity Performance Evaluation: briefly explains the
benchmarks and real applications used and the results that ascertain the
interference among virtual machines in a host; Section 5.4 – Allocation
Model: explains how affinity is used to decide where a virtual machine
instance should be allocated; Section 5.5 – Evaluated Job Scheduling
Strategies: briefly explains the scheduling methods used in this work,
including standard scheduling policies, and the proposed model;
Section 5.6 – Simulation of Scheduling Solution: makes use of

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

136

simulations to verify the hypothesis proposed by this work and, based on
the results, proposes an affinity aware scheduling model;
Section 5.7 – ProSched: The Affinity Aware Scheduler: presents the
scheduling solution proposed by this work and the results of the
experiments using an affinity scheduler; Section 5.8 – Related Work:
presents a review of related works that deal with virtual machine
scheduling and interference; Section 5.9 – Conclusion: summarizes the
results achieved by this work and proposes future developments that
could lead to a better use of cloud resources.

5.2. Problem Specification

In the context of this work, a cluster is a set of virtual machines
instantiated at the time of execution of a specific application. These
virtual machines are dedicated to solve a single distributed memory
parallel job. The evaluated clusters use Message Passing Interface (MPI)
in a distributed memory environment.

Traditionally, a job represents the entire computational work that has to
be processed by a cluster. However, in the context of this work, the term
“job” is interchangeable with cluster in execution, i.e., the proposed
model does not schedule jobs, but the entire system (virtual machines)
that contains the said jobs. In other words, a job is composed of all the
virtual machines loaded within the process to be executed. The term
“task” refers to a job processing unit, therefore, task refers to the number
of running virtual node instances. The term “instance” refers to each
virtual cluster node created in the cloud computing environment.

It is known that the total processing capacity of a computing system may
vary greatly due to the interference of the applications running on the
same host [9], the type of hypervisor (as it may be more suitable to one
type of application, while another type may present significant losses due
to the virtualization overhead), and so on. So, the total processing
capacity may be reduced, depending on how the problems were
allocated. Thus, the main focus of the proposed model is to find the best
application combinations to reduce interference among tasks. Two
applications that have fewer interference between them, due to the
reduced impact of competition for resources in a host, are henceforth
called “affine”. Therefore affinities, in the context of this work, are
normalized values of the application performance when executed
concurrently. An affinity of 1 represents two jobs whose competition

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

137

does not result in any negative effects in performance, i.e., zero
interference. An affinity of 0 represents jobs that cannot be completed
because of their competition. The affinity of n concurrent jobs is
obtained, in this work, as the arithmetic means of a performance
parameter of n jobs in parallel in respect to the same jobs when running
isolated. Equation 1.1 expresses the affinity of n concurrent jobs
(Aj1,j2,...,jn), where Pj1,j2,j3,...,jn is a measurement (time(t-1), flops, etc..) of job 1
executing in parallel with the other n jobs.

 . (5.1)

The term affinity used in this work first appears in the work [10]. To the
authors’ knowledge, [10] is the first time this term was used in this
context. This term is employed in this work to denote tasks which
cooperate better in a co-allocated scenario.

5.2.1. Problem Analysis

To better understand the contribution of this work, it is helpful to analyze
the complexity of allocating jobs among many hosts. The problem can
be summarized as: solving how to allocate a number of instances I on H
hosts, each one capable of hosting at most li instances. Assuming that
each host can receive from 0 to I instances, the analyzed problem is a
weak composition. A weak composition allows for the inclusion of the
identity(0). The composition of a positive integer s is given by the list
consisting of all positive integers whose sums results in s. Thus, for
example, let s = 3 C3 = 1+1+1;1+2;2+1;3, where C3 is the list of the
composition of the number 3. The number of parts of the list of the
composition of s is called length of the composition(n). Weak
composition includes the digit 0, so the list is unbounded, adding zeros
to the end of the sum. By limiting the number of digits we have a problem
that better resembles the one treated in this work. The work of Page [11]
presented the following definition: let n ∈ ℤ+ and s ∈ ℤ+⋃{0}, the weak
composition C s,n is the set of any non-negative integer sequences
σ = (σ0, σ1,..., σn-1), where σi ∈ ℤ+⋃{0}, and ∑I=0

n-1σi = s. From [12], the
cardinality of |Cs,n| = (n+s–1 n–1).

This abstraction of the allocation problem allows to analyze the
maximum range of the addressed problem. Based on the work described

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

138

in [11], we assign restrictions on possible values of the parts of the sum.
Let n ∈ ℤ+, s ∈ ℤ+⋃{0} and the restricted set R1, such that R1 ∈ ℤ+⋃{0} e
0 ≤ R1 ≤ s. The first-order restricted weak composition Cs,n

(R1)n is the set
of sequences of any positive integer σ = (σ0, σ1,..., σn-1), where σi ∈ R1,
and ∑i=0

n-1σi = s. As an example, given the restriction 0 ≤ R1 ≤ 2:

 (5.2)

This definition differs from that presented in [11]. In the referenced work
we have R1 ⊆ {0, 1,..., s}. For the problem addressed in this chapter, there
is not a host capable of supporting two instances, for example, which is
not capable of supporting only one instance. That is if H has li = n ⇒, H
accepts I = {n, n-1, n-2,…, 0}.

This improved abstraction still does not perfectly fit the problem faced
by this chapter, since the restriction is imposed on all hosts similarly.
Thus, again based on the referenced work, follows the final definition.
Let n ∈ ℤ+, s ∈ ℤ+⋃{0} and the second-order restricted set R n

2, such that
Rn

2 = (R0
1, R1

1,..., Rn-1
1), where 0 ≤ Ri

1 ≤ s. The second-order restricted
weak composition Cs,n

R
n2 is the set of sequences of any positive integer

σ = (σ0, σ1,..., σn-1), where σi ∈ Ri
1, and ∑i=0

n-1σi = s. This definition exactly
matches the allocation problem addressed in this chapter.

For example, given the restriction R3
2 = ({0},{0 ≤ R1

1 ≤ 2},{0 ≤ R2
1 ≤ 2}),

meaning that the first host is full and the other three hosts can receive up
to 2 instances, we have:

 . (5.3)

Thus, for the simple problem above, in all configurations, the first host
cannot receive any instance, the second host can receive 1 instance if the
second host receives 2 in the first configuration, or the second host can
receive 2 and the last host 1 instance in the second configuration. So, we
have two alternatives to allocate three instances.

In [13], the author draws a similarity between multiset combinations and
restricted compositions, and presents a way to calculate the cardinality
of the problem. I.e., it is possible to devise a method to accurately
calculate the scale of the addressed problem: by writing each host as a
polynomial which order is given by the number of instances it can
receive and the coefficients always equal to 1. The cardinality is given

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

139

by the monomial coefficient of degree n of the product of these
polynomials.

Thus, in (5.3), the first host generates the polynomial (l0), and two other
hosts generate the polynomial (l0 +l1 +l2). So, we have the following
product:

 . (5.4)

The cardinality of the problem taken as an example is the coefficient of
the monomial 2l3, which is, 2. It should be noted that the first-order
restriction assigned to each host can be conditioned both by the number
of instances that each host can receive from the job, and the number of
instances that comprise the job (Ri

1 = min(li,I)).

From all the possible ways of carrying out allocations of instances, there
may be a subset that improves the efficiency of the used infrastructure.
If the cardinality of the allocation problem is much larger than the
cardinality of the subset, pairing the instances in a host at random may
result in under-utilization of available resources. As previously
mentioned, due to the resource isolation, traditional scheduling policies
can lead to interference among virtual machines. Thus, by analyzing
affinities among virtual machines executing different workloads, and by
allocating concurrent applications accordingly, their comparative higher
affinities allow for increasing application throughput, improving
resource utilization.

5.2.2. Hypothesis

In this work, we evaluate the effect of executing simultaneously multiple
jobs, with different characteristics and needs. These characteristics can
be related to: the consumption of main memory, the network latency, the
bandwidth, the number of processing cores, among others. Assuming
that the execution of the tasks that comprise the jobs will be influenced
by how they are co-allocated. One can define how these tasks are
allocated to achieve better performance. Confirming those assertions, it
is possible to develop a task scheduling algorithm that allocates jobs,
trying to optimize the usage of available computational resources,
increasing the jobs throughput.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

140

Thus, the sharing of resources by applications with different
characteristics can present a performance degradation. But the severity
of this degradation may depend on the requirements of each application
and how it shares resources with other applications.

5.3. Affinity Performance Evaluation

A total of 5 benchmarks were selected: HPL, PARPAC Application
Benchmark, b_eff, PRIOmark and IOzone. They are used to verify the
relationship between the types of jobs running on an HPC environment,
and the impact on performance caused by the concurrent use of resources
for different types of applications. HPL and PARPAC are CPU intensive
benchmarks while b_eff, PRIOmark and IOzone are I/O intensive. While
b_eff is network I/O intensive, PRIOmark and IOzone are intensive for
disk I/O. These benchmarks focus on important aspects that affect
performance on HPC systems.

Besides these benchmarks, two real applications were also evaluated:
Montage and Blast. The use of these two real applications is to verify
how the affinity between them, used in large scale for scientific studies,
behaves and to ascertain if the results presented by the benchmarks can
be used as a general model for classifying unknown applications
affinities. Table 5.1 compares the characteristics of these applications.

Table 5.1. Comparison of applications characteristics.

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

141

The HPL (High-Performance Linpack) is an implementation for
distributed memory architectures of the popular Linpack Benchmark.
The version used in this study was developed in 2012. The HPL is a
software that solves a random dense linear system in double-precision
on distributed memory computers [14].

HPL allows to check the real capacity of a distributed memory system to
handle floating point operations. Although there are criticisms about its
usefulness as a means of assessing the performance of a scientific
computing system due to the analyses of only dense linear algebra
systems [15], it is currently used as a measurement to rank the top500,
list of the top 500 existing supercomputers.

The PARPAC, b_eff and PRIOmark, were developed by the IPACS
project (Integrated Performance Analysis of Computer Systems) [16].
IPACS was a project funded by the German Ministry for Education and
Research in partnership with the Lawrence Berkeley National
Laboratory and the German National Energy Research Scientific
Computing Center. The goal of the project was to create a set of
low-level benchmarks of applications and facilitate the execution of
these benchmarks [16].

The PARPACBench is a dynamic fluid application based on the
Lattice-Boltzmann method and is able to simulate a range of fluid
dynamic problems such as transient and steady flow, multiphase flow in
free surfaces and non-Newtonian fluids in two and three dimensions. It
is thus a good representation of real applications of fluid dynamics [16].

According to [17], the b_eff benchmark measures the accumulated
bandwidth of a parallel communications network and∕or distributed
computing systems. The execution of b_eff as a network I/O benchmark
shows that due to its algorithm, it also represents an intensive processing
model, occupying 100 % of cores assigned to it.

PRIOmark is a benchmark for disk I/O with the ability to characterize
the performance of access to a secondary storage device [18]. Although
there are numerous disk and file system benchmarks, few are able to
verify the performance in a distributed memory system, an important
factor in the analysis of systems for HPC. Thus, PRIOmark is used in
this work to evaluate the performance of disk I/O in a cluster
architecture. Tests are performed with two types of I/O, both using
Network File System (NFS). In tests with common files, all tasks access

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

142

a file common to all process, whereas in tests with single files, each task
has an exclusive file.

IOzone is a benchmark tool for file systems. This benchmark generates
and measures a variety of file operations. It is a useful tool to make
performance analysis of various conditions usage of data storage
devices. This synthetic application performs a total of twelve (12) types
of operations and in this experiment all operations were used. The
operations are: Read, write, re-read, re-write, read backwards, read
strided, fread, fwrite, random read, pread, mmap, aio_read, aio_write.

Montage was developed by the NASA/IPAC Infrared Science Archive
as an open source tool to be used to generate custom sky mosaics using
FITS (Flexible Image Transport System) images. During the application
execution, it has shown that it has several profiles, demonstrating
applications can change profile and not having only a single defined
profile. The montage started as CPU Intensive, however in the middle of
its execution it became Memory I/O Intensive. Approaching near the end
of the execution, it changes its profile once again and becomes
I/O Intensive.

The BLAST (Basic Local Alignment Search Tool) is an application to
compare information from primary biological sequences, such as amino
acid sequences of different proteins or nucleotides of DNA sequences. A
BLAST search allows the user to compare a sequence provided in a
query with a sequence library or database, and identify the sequence
strings that resemble the query sequence and are above a certain degree
of similarity. During the BLAST execution, its profile was defined as
CPU and Memory I/O intensive.

5.3.1. Experimental Affinity Results

The affinities measurements were executed in two experiments. The first
set aims to assess affinities among synthetic benchmarks widely used for
measuring performance in HPC systems: HPL and the selected
benchmarks from the IPACS benchmark suit are used. These
experiments aim to validate the affinity effect and use the measured
values in a large scale simulation with different allocation models. The
experiments used the KVM hypervisor for virtualization of resources.
The infrastructure comprised a total of 18 hosts servers with two six
cores Intel(R) Xeon(R) E5520 2.26 GHz processors, with 24 GB of main
memory, an exclusive Gigabit Ethernet interface for MPI

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

143

communication and Seagate Constellation ES storage ST3500514NS
500 GB 7200 RPM 32 MB cache SATA 3.0 Gb/s. The environment was
configured to eliminate the use of virtual memory. The communication
of this cluster uses a dedicated Planet GSW 2400 Gigabit Ethernet
switch. Thus, when performing an experiment of, for example, 108 MPI
process, 18 virtual machines instances are created with six cores, one on
each host. No virtualization layer level optimization was done, and the
created virtual machines use the KVM’s default settings.

First, 30 experiments were performed on each isolated job, which served
as a basis for comparison with the parallel experiments. Subsequent
parallel experiments were executed at least 30× for the longest running
of two applications. That means, for instance, that while HPL takes hours
to finish, b_eff only takes minutes, and so to complete 30 parallel runs
of HPL, b_eff was executed hundreds of times.

Table 5.2 contains the consolidation of the affinities calculated for the
concurrent execution between two jobs of the applications assessed. The
last column contains the UNKNOWN class. When a job cannot be
categorized, for now, it receives the default affinity value of the inverse
of the parallelism level, in this case 1/2. This value will be used in the
simulation to represent applications whose affinity values have not been
measured. This can be addressed by using categories of applications with
a default affinity value, in case it is possible to classify applications with
affinity in this way.

Table 5.2. Affinities obtained in concurrent execution of benchmarks
in virtual machines.

The second set of experiments have a reduced scale, as its goal is to
further assess the affinity effect between co-allocated applications and
use the computed value for an affinity matrix as knowledge for the
developed scheduler. Further experiments will verify how the scheduler

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

144

behaves having an affinity based knowledge to allocate task as well as
using live-migration to avoid negative impact of low affinity
co-allocated tasks. Thus, this experiment used a reduced infrastructure
composed of 3 real servers with Intel(R) CPU X5650 2.67 GHz
(12 cores), 16 GB RAM, 1 TB HD (7200 RPM), Ubuntu Server
14.04 LTS as operating system, Gigabit Ethernet network. It also uses
the KVM hypervisor. On each real server, a maximum of 2 virtual
environments are allocated. This is to evaluate the affinity between two
virtual machines competing for real resources. These virtual machines
have been configured as follows: 4 virtual QEMU cores, 6 GB of RAM,
20 GB Virtual HD and using Ubuntu Server 14.04 LTS as operating
system. For each experiment, 30 executions were also performed.

The applications used in this work were chosen because they present
distinct profiles usage of computational resources: HPL
(High-Performance Linpack benchmark) is a CPU intensive synthetic
application that can be memory intensive depending on the size of the
input array; IOzone is an intensive disk IO application that performs
operations on a file system; BLAST (Basic Local Alignment Search
Tool) is a real application used in the biology filed and it presents
intensive use of memory; and Montage (Image Mosaic Software for
Astronomers) is a scientific application used in astronomy whose profile
of resource consumption varies in intensity over time, which validates
the hypothesis that applications’ consumption may change in the course
of execution.

Table 5.3 presents the result of the second set of affinity experiments.
This matrix is used by static scheduling, which uses prior knowledge to
better allocate applications from a run queue. It should be noted that the
discrepancy between the results of the HPL co-allocated task between
the two sets of experiments results from the overhead of communication
present in the first set where a total of 18 nodes were used in a distributed
memory system.

Table 5.3. Affinity Matrix between applications (the bigger the better).

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

145

The applications used in the second set of experiments were chosen to
stress the use of one intensive computational resource. This allowed the
simplification of the affinity matrix of the applications for the creation
of a new, more generic matrix, based on the computational resources like
CPU, Memory allocation and disk IO, as can be seen in the Table 5.4.
This generic array is used by dynamic scheduling, where the
application’s profile may not be known, causing the scheduler to make
decisions at runtime.

Table 5.4. Affinity Matrix based on computational resources.

Table 5.4 is used by the scheduler to allocate and migrate these
applications after analyzing the resource consumption histories
of the applications.

5.4. Allocation Model

In the allocation model presented, the full amount of processing
capability is taken as the “main feature” for high-performance computing
environment, and how the applications with different characteristics
affect the overall throughput of jobs.

For this first model, jobs are evaluated with 4 of the benchmark
experiments HPL, PARPAC, PRIOMark, B_EFF and applications of
UNKNOWN affinity. While the affinities for known applications are
obtained with the experiments. For those submitted jobs whose
characteristics are not known, the used value is 0.5.

When a new job is submitted for execution, instances of virtual machines
are allocated in the hosts. This is done by looking for the available host
with the best affinity (i.e. > 0.5 for two jobs, > 0.3 for three jobs). Thus,
by allocating two parallel jobs with affinity higher than 0.5, the
environment will finish the two jobs faster than waiting for a job to finish
before starting another, even if this means that the job that was running
previously will take longer to finish (in the case of affinity < 1).

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

146

Thus, the cutting point for the allocation of concurrent jobs into the
adopted model is the inverse of the number of co-allocated jobs. In the
previous example, in order to run with a level 2 of parallelism, the cutting
point is 1/2. For three jobs, the cutting point should be 1/3, and so on.
However, despite this rule to optimize the use of the infrastructure, when
dealing at high levels of parallelism, this cutting point value may
represent a very large backlog of jobs to process. Thus, one must
examine to what extent it is possible to increase the throughput at the
expense of the performance of an application Quality of Service (QoS).
Also, if live-migration may occur, the value should be higher to account
for migration overhead.

While the experiments in this work were limited to the parallel execution
of only two jobs, the model is trivially extended to implement n jobs in
parallel. For this, it becomes necessary to execute the experiments and
to create an array of dimension n. That is, the dimension of the array is
given by the number of parallel tasks, and the cardinality is obtained by
the number of interest groups. For example, for a system that supports 3
concurrent applications and in which there are 2 different types of
applications, an affinity array of 2×2×2 is needed. When there is no
possibility of cores over allocations, as is the case in this work, the
maximum size of affinity vectors is given by the highest number of cores
available in a host.

Note that, for dimensions > 2 and/or cardinality ≫ 2, the complexity of
the scheduling algorithm scales exponentially, and the execution of the
experiments to evaluate affinities will be difficult to implement. One way
of reducing this problem, particularly critical in the dimension of the
array, is to define a minimum number of cores per instance. For example,
if the maximum number of cores per host, in a homogeneous system, is
12, we can define the minimum number of cores per instance as 4 or 6.
In this way, the dimension of the vector is restricted to 3 or 2,
respectively. The collateral effect of this artificial method of dimension
restriction is the possibility of creating instances with underutilized
cores. Another way to simplify the scheduling algorithm is to have a
well-defined interest group of application profiles, restricted to real cases
that may come up during scheduling as is implemented by the proposed
scheduler. This group must be created specifically to account for the
researches that make use of the platform. With a well-defined interest
group, cardinality can be greatly reduced without increasing the number
of jobs classified as unknown.

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

147

There are some special cases when the total throughput of jobs may be
sacrificed in order to avoid jobs waiting indefinitely to run (starvation).
An example is when a job has low affinity with all others jobs running
on the environment and there are no machines onto which this job can
be allocated exclusively. If nothing is done, this job may wait indefinitely
for resources in order to execute. Thus, to avoid the job starvation, the
scheduler uses an aging strategy that should be taken into account in the
job scheduling. A job has an age value that is incremented every time
computing resources are found available. However, to achieve the best
throughput, the job is not allowed to run. When the job reaches an age
limit, it is allocated to the available resources, even if it results in a lower
environmental performance. Still, the algorithm searches for the best
available affinity, and, only in this case, values below the cutting point
are considered acceptable.

5.5. Evaluated Job Scheduling Strategies

Initially, we analyzed four job scheduling strategies. The FifoScheduler
model allocates jobs in order of arrival, blocking the scheduling of
subsequent jobs until there are sufficient free resources to run the first
job in the queue. The FirstAvailableScheduler allocates instances as
soon as available resources are found, with backfilling. The
RoundRobinScheduler scheduler allocates resources in hosts one after
the other, as soon as there are available resources, and it also has
backfilling. Finally the AffinityAwareScheduler allocates jobs by
affinities, also performing backfilling.

The allocation model presented in this work considers that none of the
schedulers described above allows for the over allocation of resources,
i.e., the ratio of number of cores and tasks is no more than 1:1. In the
case of RAM memory, the sum of the memories of virtual instances must
not exceed that of the total available memory in the host.

All algorithms presented as scheduling solutions have a particular
shortcoming, with exception of the FifoScheduler. Aiming to improve
the utilization of available infrastructure, the others schedulers try to
insert as many jobs as possible for parallel execution in the environment.
A fact in favor of smaller jobs, i.e. those requiring fewer instances, fewer
cores and fewer memory. The FifoScheduler avoids this problem by
allocating jobs in order of arrival and blocking until available resources
are found meeting the request of the next job in the queue. Another

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

148

positive aspect of this scheduler is its upper limit of complexity in the
allocation of a job at h available hosts O(h).

The FirstAvailableScheduler acts in a similar way to the FifoScheduler,
but enabling backfilling. By doing so, it has the same upper limit of
complexity of the FifoScheduler, O(h). The behavior of this model,
compared to the FifoScheduler, will be dependent on the affinity of the
jobs involved. In cases of low general affinity, the model of the
FirstAvailableScheduler tends to behave less satisfactorily, since using
every available resource maximizes the parallelism, but will also suffer
a greater impact of low affinity. The contrary is also true, i.e. by
maximizing the parallelism of jobs with good affinity, the throughput of
jobs will be higher.

The RoundRobinScheduler algorithm tries to allocate the maximum
possible instances without concurrency, in order to reduce the impact of
parallelism in a host. This is due to the fact that, usually, the parallelism
will negatively affect the job execution, even if the sum of the
performance metric for parallel execution is greater than the sequential
execution of these jobs, leading to reduced QoS. However, this gain may
be insignificant in situations where many jobs are in the run queue. In
this scenario, the exclusive resources will be quickly exhausted, turning
into parallel execution of jobs. Another negative aspect of this strategy
is the upper limit of the time complexity of the model. For a job
composed of i instances for the allocation in h hosts, in the extreme
scenario where the last analyzed host has resources for i instances and
only it has free resources, and so we have O(h*i). Its worst-case spacial
complexity is still obtained based on the number of hosts.

Finally, the last presented algorithm is the AffinityAwareScheduler. This
model, based on the knowledge of how the affinity of specific jobs will
influence the throughput of the environment, allows the allocation
decision that provides the best throughput. This causes the allocation of
i first instances exclusively in the hosts while there are idle hosts, since
the parallelism negatively influences all the jobs combinations that can
be performed (all affinities sampled are below 1). As the simulations
indicate, this represents a significant benefit to performance. To find the
best allocation, the algorithm visits all h hosts available, storing the
information of those that have the necessary resources for allocation.
After that, the algorithm iterates the free h′ hosts encountered, assigning
instances to them. If there are no more instances, a third analysis is done
searching for the highest affinity with the i instances allocated. This

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

149

algorithm has a temporal complexity (h+h′*i), where for three levels of
parallelism, we have 0 ≤ h′≤ 3h, and we have as the upper limit O(h*i).
Algorithm 5.1 presents a simplified version of the algorithm
implemented to allocate tasks based on affinity.

Algorithm 5.1. Allocate (Task task).

5.6. Simulation of Scheduling Solution

The developed simulation enables the execution of thousands of jobs in
different computational infrastructures in a much smaller time interval
than the real execution, without the need of using the actual equipment.
Some of the used benchmarks may take many hours to conclude, so it
was not possible to conduct these experiments. Another advantage of
using simulation is the possibility of creating groups of interest with a
cardinality larger than the permitted by experiments (due to time
constraints), i.e., performing the simulation with a larger number of
interest group profiles than the benchmark executed experiments.

In the simulation, a job is represented as an object composed of virtual
machine instances and the resources needed for their execution (tasks).
As previously mentioned, in the context of this work, a running cluster
is a “job”. In the case of the AffinityAwareScheduler, each job also has
a value representing its aging. The task is the basic unit for the
scheduling. The virtual machine instances of a job included in this
simulation are homogeneous, i.e., they have an identical configuration of
cores and main memory usage.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

150

For the execution of jobs, we use processing cycles as a runtime unit. A
job has a number of cycles required for its conclusion. If this job is run
separately, each task contributes with one cycle to the job processing. As
jobs are processed in parallel, the scheduling affinity array is queried to
apply the jobs’ affinity. The simulations take the cycle to be proportional
to minutes. This distinction is necessary in order to adjust the amount of
jobs that are submitted in each cycle. For the envisioned environment, in
seeking for a more realistic scenario, it is not usual to get hundreds of
job submissions every second or the need for processing time to be of
the order of milliseconds.

The simulation generates synthetic jobs, setting at random the type of job
and the consumed resources, as well as the time required to execute the
job in isolation, i.e., using dedicated resources. Once the jobs are defined
and assigned, the arrival orders are generated to simulate the submission
of jobs at different times. These arrival orders are set according to the
processing cycle, but each one of the evaluated scheduler has identical
orders of job submission.

For each execution, a simulated infrastructure composed of 1000
homogeneous processing nodes is available. Each node has
12 cores and 36 GB of main memory. Each host can perform
2 co-allocated tasks. The jobs executed in the simulation are chosen at
random from the types available in the affinity table, with random
requirements for the necessary number of instances (from 10 to 1000),
the number cores (from 1 to 12) and the main memory (from 100 MB
to 12 GB).

Thus, the simulations occurred with a maximum of two parallel
applications, with empirical affinity array computed by the first set of
affinity experiments.

5.6.1. Simulation with Concurrent Jobs Based on Affinity
of Experiments

This simulation aims to analyze how the schedulers’ models behave with
the empirical affinity values obtained by the experiments. However, for
the affinities of parallel execution of jobs with the b_eff benchmark,
there are two possible values. The calculation of the affinity of these jobs
is A = 0.6 for HPL, A = 0.49 for PARPAC, A = 0.27 for two b_eff jobs,
A = 0.69 for PRIOmark common and A = 0.76 for PRIOmark single.
However, during the experiments, due to the excessive increase in

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

151

communication time, when b_eff executes concurrently, it may not run
accordingly (application report errors), thus suggesting the adoption of
affinity A = 0. For affinity-based schedulers, the simulation adopts the
affinity value A = 0, preventing these jobs from running in parallel. For
other schedulers, the b_eff job was removed from the interest groups.

By adopting these affinity values one more benefit of the scheduling
policy based on affinities is made clear. Besides suffering severe
performance degradation, some jobs in those models not aware of
affinities can run with errors because of the competition that takes place
in the host. These problems are eliminated by models based on affinities.
The only way to avoid concurrent execution errors in these jobs in the
traditional models would be to consciously completely eliminate job
execution, or at least make sure that no possible concurrent execution of
jobs that can fail. By adopting the affinity 0, the affinity-based models
perform this operation automatically.

The simulation consists of 100 executions of a workload comprised of
1000 jobs, with a maximum of two concurrent jobs in each host. Jobs are
created at random and belong to one of the four (five if including the two
PRIOmark types) evaluated applications in the first set of experiments,
as well as the UNKNOWN type of jobs, with affinity A = 0.5 for generic
jobs. For the execution with models not based on affinities, when a job
of type b_eff is created, its type is changed also at random into one of the
other groups that these schedulers can run without errors. All other
parameters, such as the number of instances and the processing time, are
maintained. This change ensures an advantage on the performance of
designs not based on affinity, since these schedulers do not need to
allocate single equipment for executing jobs of type b_eff.

The model based on affinities was evaluated with two different values
aging. One of the experiments was made using a low aging of 15 minutes
(cycles). This value was chosen to represent a scheduling algorithm
allowing a job waiting for approximately 15 minutes on the queue, to be
executed. This value also made it possible to study the impact on
performance of a scheduling with a low waiting timeout. After the
timeout expires, the job is allocated even if the affinity is lower than 0.5.

On the other hand, the second experiment with the affinity based model,
an aging value of 3000 minutes was applied. Preliminary experiments
showed that this value, with the employed settings, produced very small
preemption, with almost all jobs allocated based on the instantaneous

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

152

optimal affinity, and without the need to allocate due to the waiting time
limits. This value is used as an example in comparison to a policy that
allows for practically indefinite waiting.

Fig. 5.1 shows the average processing time for each scheduler. The value
shown is the average of cycles that each model takes to process
1000 jobs in 100 experiments. Despite of the disadvantage attributed to
the models based on affinities in this experiment, working with jobs that
do not support parallelism, both models evaluated were more effective
in processing jobs. The AffinityAwareScheduler model with aging of
3000 cycles had significant gains (5560.5 cycles) if compared to other
models. The AffinityAwareScheduler model with 15 aging cycles
(5913.95 cycles) is slightly faster than the RoundRobinScheduler model
(5933.83 cycles) and FirstAvailableScheduler (6006.40). Meanwhile,
the FifoScheduler model presents the worst completion time
(6831.60 cycles).

Fig. 5.1. Averages of processing time for 100 executions with 1000 jobs
workload with at most 2 parallel job instances per host.

5.6.2. AffinityAwareFifoScheduler Model

The proposed AffinityAwareScheduler focuses mainly on the system
throughput, but there is the need for an algorithm capable of following

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

153

the ordering of job arrival. Therefore, this work presents the union of the
characteristics of the FifoScheduler model with the affinity-based model.
Thus, a final algorithm is proposed, the AffinityAwareFifoScheduler.
This algorithm is an extension of the model based on affinities with
blocking queue, i.e., if there are no resources to meet the requirements
of the next job from the queue, then the scheduler waits until resources
become available. Due to this scheduling policy, a part of maintaining
the processing order paired with the submission, it also eliminates the
tendency of the affinity based algorithm of allocating smaller jobs at the
expense of more resource-consuming jobs.

To analyze the performance of this new model, one more simulation was
executed. This simulation consists of the implementation of the two
models whose best features allowed the creation of the
AffinityAwareFifoScheduler, plus this new model. The simulation
parameters are set with three levels of parallelism and an affinity
(randomly generated) in the range 0 < A ≤ 1. The random value is used
because there are no experiments measuring affinities with three
co-allocated applications. Thus, to be able to use more co-allocated
applications per host and improve on the simulations, random affinity
values are generated. An aging parameter of 15 cycles was adopted for
the AffinityAwareFifoScheduler. Since only the job in front of the queue
(waiting for resources to be allocated) suffers aging, a high value can
cause long waiting periods to start the execution of the job. However, if
starvation is not a problem, one can achieve a better performance by
increasing this parameter. For comparison, the AffinityAwareScheduler
was set to 3000 cycles of aging parameter, and it yielded the best in
performance in all of the simulations.

Fig. 5.2 shows an average of the results of 100 experiments. It is possible
to notice an improvement in the performance of the FifoScheduler
algorithm (approximately 1.6× faster), confirming that the affinity-aware
scheduler can contribute to a better performance. From the 100,000 tests
performed, the AffinityAwareScheduler 3000 algorithm activated aging
in just 8 jobs, while the new algorithm had 4,479 of the 100,000 total
running since they exceeded the maximum aging limit.

The results presented so far indicates that by taking advantage of the
affinity relation between co-allocated VMs, the overall performance of
the environment can be greatly enhanced. Thus, following the positive
results of the experiments, this work proposes a scheduler to fully use
the affinity for improved environment usage.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

154

Fig. 5.2. AffinityAwareFifoScheduler execution compared to the FifoScheduler
and AffinityAwareShcheduler 3000 models.

5.7. ProSched: The Affinity Aware Scheduler

According to [19], an inappropriate allocation of competing applications
can cause performance degradation. If the limits specified by Quality of
Service contracts are extrapolated, a cloud proposal may be invalidated.
For this reason, it becomes necessary the methods of scheduling cloud
applications that allow applications that have different characteristics
and, therefore, reduce the impact of competition between them.

Because applications in a virtual machine can change their computing
resource usage profile during execution, it is also necessary to analyze
this change in case of degradation in others virtual environments. For
example, only classifying the application as processing-intensive
(CPU-Bound) does not allow to guarantee that this virtual machine will
occupy 100 % CPU during the entire runtime as was in the previous
simplified simulations. There is a possibility that at any point in time, the
application will change its consumption profile and start using another
resource strongly [20]. At this moment, it is introduced one of the
motivations concerning the development of the proposed scheduler,
where changes in the application’s profile can lead to overload and
degradation in the execution of the other virtual machines allocated in
the same host. This can occur not only at allocation time, but might also
arise during the execution due to changes in the application
characteristics.

The use of the concept of affinity between applications for a scheduler
aims to contribute to the allocation of the virtual environment based on

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

155

the characteristics of consumption and affinity between applications.
Thus, it is necessary to monitor and analyze the various application
profiles, established through the history of resource consumption.
Through this study, a degree of affinity is defined to be used by the
scheduler to optimize the process of allocation and migration of virtual
environments in a cloud, in order to avoid the impact of the competition
of the computational resources. Differently from the simulations, the
application could, for example, during a time behave with a certain
aspect, such as CPU intensive and in other moments behave as IO
intensive. This needs to be addressed to better allocate real application
that have different characteristics depending on the time.

In this section, it is introduced two used scheduler techniques, the static
and the dynamic technique. These two techniques refer to when
decisions are made. In static scheduling, application profiles are
previously known and, once allocated, virtual machines are kept on the
same physical machine until the execution ends. However, in dynamic
scheduling, one may not have initial knowledge about the characteristics
of the application, so the profile of resource usage may change during
execution. Applications reach the scheduler at different times. When the
scheduler detects a behavior change in the application profile, it may
decide to migrate the virtual machines in order to avoid the performance
dropping of those sharing the same physical environment [6].

5.7.1. Scheduler Method

The scheduler method is built in four independent services. Each service
is responsible for one functionality in scheduler system (Fig. 5.3). In this
context, the scheduler working unit is the task, as a virtual machine with
an application or part of an application running on a bare metal. That is,
if a job is divided in multiple virtual machines, each one of these VMs
constitute a task and can be allocated or migrated individually. This
granularity allows for a balance in allocation flexibility and
VMs overhead.

The ProSched Web service is a web interface used to submit
applications, manage and monitor, in real time, the infrastructure. The
infrastructure functionally is accessed only by administrators.

The Deployer service sends applications to the infrastructure, it’s main
focus is the virtual machine management. It works directly with the
Scheduler, requesting the best host to allocate each task in the

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

156

infrastructure. After this communication, the Deployer starts the virtual
instances on compute host or initiates the live migration of virtual
machines with lower affinity degree. This service is also responsible to
start up monitors for each virtual machine running in the scheduler
infrastructure. It is worth emphasizing that the “0.6” affinity degree was
obtained empirically through the application execution history and it is
possible to adjust it. This value is to give an advantage before migrating
VMs as a value bellow this any performance gain would be neglected by
the migration overhead.

Fig. 5.3. Scheduler Architecture based on Applications Profile.

In addition, the Deployer service has two ways of managing the virtual
machines used in this scheduling approach. The first is the direct
integration with hypervisors through the LibVirt API, which can be used
to manage KVM, Xen, VMware and other virtualization technologies
[21] (for the experiments, KVM was used). And also, integration with
cloud providers, using the PkgCloud library. PkgCloud is a robust
standard library for NodeJS that abstracts the differences between
various cloud providers, making service requests homogeneous
regardless of the cloud infrastructure used. It serves the following cloud
providers: Amazon, Azure, DigitalOcean, HP, Joyent, Openstack and
Rackspace [22].

The Monitor service aims to collect and analyze data about the tasks
during their execution. For each virtual environment, a monitor agent is

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

157

allocated to collect the resource usage information and, at the end, store
its history on file for later use. This collection is done in a non-intrusive
way, without the need to modify the application code (Fig. 5.4).

Fig. 5.4. Service Monitor Architecture.

The application’s execution profile is obtained by monitoring the task.
Once the value collected exceeds the system degradation limit, which is
identified by the Profile Analyzer, the monitor sends a message through
the Notifier module, signaling to the scheduler about the resource
consumption profile change of this application (Fig. 5.5(a)). Throughout
the monitoring, the data of interest are collected and stored in files that
will be used by the scheduler as base knowledge in future executions.

Fig. 5.5. Monitor Data Analysis Method.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

158

When we analyze the task’s CPU consumption history graph, we can
immediately check two aspects: the variation of the use of the resources
forms peaks and valleys, and the existence of trends over time. One
solution found for this problem was the application of the Exponential
Moving Average (EMA) in the resource consumption values obtained
from the virtual environments. In this way, the curve movements are
smoothed, allowing a real representation of the applications’ behavior.
This avoids that sudden, not constant, changes being erroneously
classified as the current task profile.

The next service to be addressed is the Prosched. Its main contribution is
to reduce the makespan (Time interval between the allocation of the first
task to the end of the last execution [23]) of a queue of tasks. The use of
the makespan metric for this evaluation is due to the finite queues
executed in the experiments, however this is extended directly for
unknown queue sizes in real scenarios. The makespan reduction is
achieved by learning their dynamic profiles based on previous
executions. In cases of profile change, the scheduler is able to allocate or
migrate the task to another real machine in the infrastructure. For this, an
analysis is made to find more tasks with greater affinity, ensuring the
maintenance of the capacity to execute this environment.

The behavior of the developed scheduler method combines techniques
from the Round-Robin (RR) algorithm, with application affinity and
dynamic execution profile. In this way, the first step in the allocation is
to find if there are free resources. If it is found, the task is allocated to
the available resource. If the resources have at least one task, the
application affinity given in Table 5.4 is used.

The applications used for these experiments were the HPL and IOzone
benchmarks and the real applications Montage and Blast. As ascertained
during the affinity measurements experiments, Blast has an execution
profile analogous to the HPL benchmark and Montage varies between
HPL and IOzone during its execution. This allows to verify how the
scheduler behaves with real applications and compare it to the
benchmarks scheduling.

After a task enter into the execution queue, the scheduler starts the
resource selection process for its allocation. Resources are organized in
a way that simplifies a Round-Robin allocation by ordering them
incrementally by the amount of tasks. In parallel, the scheduler looks for
similar tasks in its affinity table and aggregates them in order to obtain

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

159

the average execution profile. For the knowledge of executing this
profile, the scheduler only uses executions in which the task did not
compete for resources with other applications. For this, the following
cases are analyzed:

1. The task has affinity and is not running: the resource is allocated
and the scheduler tells the Deployer which host to start the task. The
Deployer, in turn, starts the virtual machine and the monitor for
that task;

2. The task has affinity and is in execution: in this case, the scheduler
only registers the execution profile of the task, without acting on
the system;

3. The task has no affinity, but is in execution: the scheduler evaluates
the task and, based on the average execution profile and if the
execution time is longer than the migration time, the scheduler
requests the Deployer to perform the live-migration of the virtual
machine to a resource that has the highest affinity. Otherwise
migration is not done;

4. The task has no affinity and is not running: The scheduler queues it
for re-evaluation during the monitors notification process.

During the task life cycle, the Monitor collects the information and
notifies the scheduler if a profile change is detected. When the task
finishes its execution, the scheduler stores the profile in the knowledge
table and terminates its execution, informing that the resource has been
released. Fig. 5.6 shows the steps in the operation of the
scheduling algorithm.

The ProSched scheduler also has a scheduling policy, which allows the
allocation of tasks by assigning a priority to tasks in a queue. In the
algorithm, a certain amount of priority coupons is distributed to be used
when the user wants to have a higher priority in the execution queue of
the tasks. These “coupons” are returned to the user after the deadline of
24 hours in order to be reused. The amount of “coupons” to be distributed
by the Prosched priority algorithm is easily changed, according to the
need of each infrastructure. It is up to the administrator to assign the
amount of “coupons” to each user.

Once the task enters the execution queue, those with the highest degree
of affinity and the highest amount of priority “coupons” are scaled first.
With each round, applications that are queued have their priority value

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

160

increased. This solution implements the aging parading tested in the
simulations. With this, users need to use their “coupons” more
conscientiously, prioritizing their most important tasks.

Fig. 5.6. Flowchart of the Prosched Scheduling Algorithm.

However, as the focus of the work is to evaluate the degree of
degradation of the applications and their allocation based on the degree
of affinity between the profiles, this priority algorithm was not used, so
all applications had the same priority value for the experiments
and results.

5.7.2. Scheduler Results

Static Scheduling Results

This subsection aims to present the results of the static scheduling
algorithm, as well as to validate the allocation strategy based on the
affinity between the applications and between the computational

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

161

resources used in the scheduler. In order to evaluate the performance of
the static scheduling, the results are compared with the FCFS
(First-Come First-Served) strategies, Random, in the form of a random
allocation, and the Affinity. To validate the dynamic algorithm, a
comparison between the Round-Robin algorithm and Affinity, with and
without knowledge of the application profiles, and applying a hybrid
knowledge on a queue, merging these two possibilities in the knowledge
of the profiles. The static and dynamic approaches were adopted
according to the types of online and offline scheduling.

In order to validate the hypothesis that the affinity mode allocation can
minimize the makespan and, consequently, optimize the use of
computational resources, when compared to other approaches, only one
real server was used in the static experiment to run an application queue.
This configuration has the purpose of demonstrating that, in the worst
case, it is possible to reduce the time of a run queue. The gain using only
1 server indicates that it is possible to make gains with more than one. It
is important to remember that the affinity study proposed herein aims to
evaluate the impact between two virtual machines competing for
computational resources in the same host. So in both experiments, two
virtual machines are always allocated, which will be running one or
more applications.

The order of the execution queue (Fig. 5.7) is defined by the following
applications: BLAST, HPL, IOzone, IOzone, HPL, HPL, Montage, HPL,
Montage and IOzone. This queue was created with the objective of
analyzing the results of the static scheduling involving applications with
low degree of affinity, according to Table 5.3.

Fig. 5.7. The execution timeline of the queue, in hours, of FCFS, Affinity
and Random strategy.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

162

The Random strategy was the one that resulted in the worst performance,
with an average makespan of 129.5 minutes. The increase in execution
time is related to the fact that the first applications to be allocated
concurrently were IOzone and Montage. The affinity matrix shows a low
degree of affinity between these applications. With the analysis of the
timeline of the Random algorithm (Fig. 5.7), it is possible to verify that
during the execution of IOzone another IOzone is scaled to compete for
the same resources, whereas the following application to IOzone is the
HPL. If the knowledge of the behavior of these applications had been
used, the HPL could have been executed before the IOzone, which would
guarantee a better use of the computational resources, reaching also the
reduction of the execution time.

When analyzing the time of each approach (Fig. 5.7), the affinity-based
strategy between applications obtained an average makespan of
110.9 minutes. The reduction of time is related to the use of previous
knowledge to avoid allocations of applications with low degree of
affinity, which did not occur in the other algorithms. This was possible
by preventing IO-intensive applications from being allocated
concurrently.

In summary, affinity-based allocation managed to reduce the makespan
time between the FCFS and Random approaches by approximately
13.3 and 18.6 minutes, respectively. The results show that the proposed
strategy obtained a performance gain of up to 16.7 %, which proves the
efficiency of the scheduler.

Dynamic Scheduling Results

The experiment whose result is illustrated by Fig. 5.8 proves that the
dynamic scheduler has the ability to avoid the allocation of applications
with low degree of affinity in situations in which the profiles are defined.
The experiment also aims to show how the scheduler acts in conjunction
with the Monitor, when there is no knowledge about the applications,
and it is necessary to migrate them through live-migration.

For the experiments, application profiles were elaborated to be executed
created from the combination of some applications studied in this work.
The purpose of these profiles is to validate the joint use of monitoring
and scheduling, since the applications have different profiles and,
therefore, it is more flexible to verify their behavior throughout the
executions. This allows you to validate the proposed scheduling policy.

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

163

The experiments were organized in the following way: 6 sets of
application profiles are sent to the scheduler, arriving at different times
of time, one after the other, as in a real commercial scenario. The set of
application profiles elaborated for the scheduling are: A {HPL,
IOZONE}, B {BLAST, HPL}, C {HPL}, D {IOZONE}, E {HPL,
IOZONE} e F {BLAST, HPL}.

Fig. 5.8. Profile of task execution using the Round-Robin (RR) method.

The queue to be executed dynamically by the scheduler follows the
following order of arrival of the Profiles: A, B, D, E, C, F. The formation
of this queue executes the worst case for the proposed scheduling
algorithm, concurrent allocation of two conflicting applications,
identified in the results of the competition effect analysis.

In the first experiment, called RR Base, the Round-Robin allocation
strategy is employed. This allocation strategy is commonly used by cloud
computing systems, such as OpenStack [24]. The objective of this
experiment is to compare this strategy with the one developed in this
work, which optimizes the posterior allocations based on the
consumption profile of the applications, as well as the migration of the
environment when the degree of affinity is low.

The dynamic scheduling police has the advantage of not needing to
pre-compute affinity values, being more adaptable to a scenario where
multiple different applications are submitted for the cloud such as in
public clouds infrastructures.

Through the analysis of Fig. 5.8, it is possible to notice that the greatest
impact was perceived in Host 1. Initially, the applications were CPU
intensive. However, after approximately 14 minutes, both applications
changed their resource consumption profile and became intensive in IO.
Because of this, the applications start to compete for the same resource
that has proven to be the most critical against the competition. The IO
resource sharing by the applications causes a degradation of

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

164

approximately 50 % in the execution of this profile, thus obtaining a
makespan of 48 minutes.

Fig. 5.9 illustrates the experiment in which real-time application profiles
are discovered through monitoring and identification by the Monitor.
The problem identified in the base experiment (Fig. 5.8) is solved by the
proposed scheduler, through the migration of conflicting virtual
environments. In Fig. 5.9, you can see that the impact moment has been
identified when the load balancing process is started. This approach
obtained a makespan of 41 minutes, 7 minutes less than for the RR Base.

Fig. 5.9. Profile of tasks execution using the proposed method,
without the knowledge of the applications (ASC).

The experiment illustrated by Fig. 5.10 allocates the applications
according to their profiles previously obtained. This allows the resources
usage to be optimized, following the affinity matrix as knowledge
(Table 5.4).

Fig. 5.10. Profile of tasks execution using the proposed method
with the application knowledge (ACC).

In the Fig. 5.10, it is possible to verify that, starting from the initial
allocation of the first 3 tasks, the use of the affinity matrix is started. It is
at this point that the scheduler checks the profile and resource
consumption history of each application. For example, when the

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

165

Profile E is received by the scheduler, there is an intensive
consumption application in IO. For this reason, Hosts 1 and 3 were
considered ineligible to receive such a task, which caused the scheduler
to opt for Host 2. Then, the next received application is the one classified
with Profile C, which intensive CPU consumption. According to the
affinity matrix, CPU has an affinity degree with IO of 0.91, which is why
the scheduler allocates this application competing with the Profile D in
Host 3. The last applications to be staggered (Profile F) are CPU and
Memory intensive. With this, it is allocated competing with IO, due to
the degree of affinity with applications of this type being 0.86.

The proposed algorithm allowed to combine the study of the impact of
competition between applications and the knowledge about their
profiles. The adoption of the algorithm resulted in the reduction of the
makespan in approximately 31 minutes, being on average 54 % faster
than Experiment 1 (RR), and 38 % when compared to the algorithm with
affinity without knowledge of the applications, presented in
Experiment 2 (ASC).

The results of these experiments allowed to demonstrate the gain of time
when using application profiles. In addition, as applications are
repeatedly executed, the more refined will be its profile, which allows
you to increase the quality of the scheduling in future allocations.

5.8. Related Work

The work developed in [25] defines the term “performance interference”
in the context of virtual machines as the degradation in performance
experienced by co-allocated applications executing in apparently
identical hardware. This degradation tends to face more challenges in
virtual machines. One of the main advantages of virtual machines is
environment isolation, however this isolation leads to greater
interference issues by VMs. As an example, due to scheduling algorithms
executing without knowledge of each other, applications could face
harsher resource competition. For that reason, well established
scheduling algorithms might not work in virtual environments. The work
also used similar workload characteristics to devise a model able to
predict performance interference with great accuracy, with an error
margin of about 5 %.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

166

The article [26] presents a scheduler named Paragon, which
distinguishes itself by applying concepts of datacenter heterogeneity and
applications interference to co-allocate tasks with the goal of delivering
better QoS and higher datacenter throughput. By heterogeneity, the
authors mean that the machines available in a given datacenter could
have different performance results due to mismatch in hardware and by
interference the authors mean how co-allocated tasks compete for
resources. Paragon quickly analyzes the datacenter and workload to be
run and, based on data from previously submitted workload, allocates the
tasks. This analysis and categorization by similar workload allows
Paragon to achieve comparatively high QoS and datacenter throughput.

The article [27] presents an analysis of the impact of interference in
co-allocated virtual machines. This work distinguishes itself by
associating this impact with increased energy consumption. Recently,
greater importance has been directed towards reducing energy
consumption in cloud datacenters.

CloudScope [28] is a project that applies a discrete-time Markov Chain
model prediction of application interference to allocate or reallocate
virtual machines in a cloud environment. CloudScope is developed with
Xen hypervisor and uses Xen’s already present performance information
as input, therefore causing low overhead. Besides, dealing with
interference resulting in average 7.5 % better performance, CloudScope
can set hypervisor optimization options to deliver an average of 28.8 %
better network performance.

The work presented in [25-28] analyzes tasks with workload groups,
whereas the work presented here deals with tasks individually. On a
public or private cloud with high heterogeneity of tasks, these sets of
similar workload characteristics are ideal, because they reduce the cost
of analyzing each task. However, we propose that in private clouds,
where a small set of task profiles are submitted, computing the
interference among tasks will produce better throughput. Due to this
limited set of tasks, a more specific analysis of the affinity among tasks
could yield better task performance and cloud datacenter throughput.
When there is a known set of applications that are repeatedly executed
on the system, i.e., an off-line system as defined in [29], this approach
could lead to maximization of resource usage. The affinities of such
application would already have been computed and the scheduler can
restrain itself to just allocating it so that the resource is used to its
maximum possible capabilities given the previous allocated states. Also,

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

167

as far as could be investigated, the works published in this area deal with
instances as standalone objects. The work presented here focus on
applications for distributed memory systems, so a job is composed of
many identical instances (tasks) spread throughout a large number of
physical hosts. Finally, in case of public clouds, where there is a large
set of workload profiles, the initial categorization in a generic profile, the
analyze of the application profile in real time with a monitor and the
live-migration, as adopted by the proposed scheduler, can achieve better
resource utilization.

In [30] the authors seek to formulate efficient solutions for reducing
energy consumption while minimizing performance interference among
VMs. The interference probe is treated through the profiling of the VM
to predict the level of interference of this in execution with another VM.
This approach is interesting when considering cloud PaaS environments
where VMs contain the same applications, changing only the data used.
The solution proposed in this article focuses on the allocation of clusters
for scientific applications, thus requiring a profiling per application,
since different applications can be executed in the same VM. The
proposed approach also has the advantages of scheduling virtual clusters
and verifying the level of interference between more than
two applications.

The problem of minimizing interference on Virtual Machine Placement
is addressed by Rahman and Graham in [31]. The authors refer to it as a
problem of placing VMs on hosts according to their requirements as
specified in Service Level Agreements (SLAs). They introduced
Compatibility-based Static VM Placement (CSVP), which exploits
obtained information about VM’s expected load variation to co-locate
compatible Virtual Machines together in order to improve their initial
performance and implemented it on CloudSim. The simulations with
workloads derived from Google traces allowed the authors to conclude
that the use of CSVP helps to decrease and even avoid VM interference
in most of cases. Although CSVP’s simulations results are consistent, it
is uncertain how it would deal with the unavailability of hosts that match
SLA requirements. Our proposal introduces an aging factor, which
increases VM’s placement priority and avoids it to starve. Also, their
work uses an estimation of VM’s load variation while ours defines an
affinity value based on previous evaluations. Furthermore, their work
assesses interference between individual VMs whilst ours assesses the
VMs in the context of a cluster.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

168

[32], in turn, introduces CloudSim, whose goal is to provide a simulation
system that enables modeling, simulation and experimentation of cloud
infrastructures and application services. Among the conclusions
obtained, in order to optimize the use of the computational cloud and to
verify the effects of competition on the infrastructure, the need to
monitor the applications was demonstrated. However, it does not
presents a study that defines what types of applications could coexist in
these virtual environments, without the degradation due to competition
by computational resources.

In the work of [33], it is proposed to create an SLA (Service Level
Agreement) decision-making system for optimal aggregation of
resources. In the proposal, there is a control of resource use that
punctuates expenditures and compares with proposed service levels,
penalizing an excessive burden. The authors’ proposal is based on
consumption calculation, but it refers to the platform as a service,
without monitoring the load on the entire infrastructure, nor do they
evaluate different types of applications that can compete by the
same resource.

[34] presents an analysis of the impact of scientific applications running
on a virtualized cluster, based on the impact caused by intensive network
and IO use. The results and conclusions of the authors point out the need
to define the profile of the behavior of the applications to better stage
them in virtualized HPC environments in order to avoid the overhead of
the computational resources.

The work developed by [35] presents a method of scheduling virtual
machines in computational clouds focused on HPC. The scheduler
developed by the author takes into consideration the power consumption
and type of workload that the virtual machines will execute to decide
when and on which server they will be allocated. The evaluation of the
algorithm was made using the CloudSim. The results indicate the need to
analyze specific details of the infrastructures and applications to
contribute to the resources’ optimization and, consequently, increase the
levels of service offer and reduce the problems caused by the concurrent
use of resources.

The works [32-35] point to an existing gap regarding the need to deepen
the studies about the competition’s effects when a real environment is
shared by several virtualized environments. Even so, they do not cite
studies using the concept of Affinity between applications.

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

169

5.9. Conclusion

It is observed that by adopting an affinity conscious allocation model,
one can obtain better use of existing infrastructure. Furthermore, the
scheduler developed was able of using the affinity knowledge to improve
resource utilization. And, by the use of dynamic scheduling strategy,
even negate the need to pre-compute affinity tables.

Execution of the experiments in Section 5.3 allowed not only to check
for different affinities for different applications, but also empirical
development of an affinity array for the parallel execution of two
concurrent jobs.

This chapter also presented the simulation of the proposed models in
Section 5.6. These simulations allowed us to verify the performance of
different allocation solutions for virtual machines. Finally, the
simulations enabled the execution of a large set of experiments. In these
experiments, the allocation models of virtual machines based on affinity
demonstrated a good job throughput when compared to affinity
unaware models.

The results obtained in the static and dynamic allocation experiments
prove the efficiency of the developed scheduler. It was possible to
aggregate the study of affinity of the applications to the monitoring
system, to identify a task that changes its consumption of computational
resources and negatively impacts on the infrastructure. In addition, it
allowed the identification of the profiles in real time, besides the analysis
of the history of consumption, optimizing the allocations and
consequently, the use of the computational resources. Another point
worth mentioning is the system that identifies and migrates virtual
environments when an application with a low degree of affinity is
identified. This factor, together with the efficient allocation, allowed the
proposed scheduler to obtain better use of the resources, besides reducing
the time that an application waits in the queue until it is executed.

The allocation model operates to avoid application and system overhead,
migrating the virtual machines only when needed. Migration is
considered necessary only in situations where the migration time is
shorter than the time it remains in a profile that has a low degree of
affinity. This contributes to the fact that the execution of the applications
will suffer less negative influence due to competition, at the same time
that the resource utilization rate is increased. Such benefits are relevant
to both users and cloud service providers.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

170

Thus, the main contribution of this work is the consolidation of the
available computing infrastructure, maximizing the throughput of jobs in
the environment. Even the reduced scope of the presented experiments
highlights the opportunity of creating affinity arrays tailored for the
workload of a cloud environment, taking advantage of the available
flexibility with an intelligent use of computing resources and, in cases
where the affinity is unknown the scheduler can adapt in real time to
improve resource utilization.

5.9.1. Future Work

The experiments conducted to assert application affinities were restricted
to a reduced number of applications, specifically benchmark applications
representative of a specific characteristic, such as CPU, Memory or IO
intensive. Thus, it is necessary to perform new experiments in order to
encompass a greater number of different application profiles, particularly
real applications. Possibly, generic application profiles, as exemplified
in this work, allowing the allocation of unknown applications into a
profile that best captures the performance requirements of each job,
similar to the dwarf categorizations seen in [36]. Therefore, generic
interest groups eliminate the need to perform experiments for each type
of application running in a given environment, even though the generic
categorization may not be able to get as good a result as is the case with
specific affinities for each application.

An empirical method for the construction of the affinity matrix was
employed. Thus, the work presented needs the predetermination of the
affinities for workloads that run on an environment, or that a group of
jobs that have similar processing characteristics and affinities be
determined within an error margin as previously specified. Another way
to obtain an affinity array without the need to conduct experiments is the
dynamic creation of job affinities through machine learning. Machine
learning provides some interesting benefits that can be used. For
example, the creation, at runtime, of affinities in an environment where
there is repetition or a pattern of executed jobs. In this scenario, the
automatic creation of specific affinities to the managed environment
would be possible. Also, to enhance this scheduler, a suggestion for
future work involves the migration of the environment before changes in
the profile can negatively impact the infrastructure and other virtual
environments. To do this, the scheduler would have to analyze the

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

171

application profile and using machine learning methods, to try anticipate
changes and migrate the environment.

Recently, container based virtualization has gained importance in cloud
environments. Some of the aspects that helped containers gain this
attention are the fast instance deployment when compared to virtual
machines, and the lower overhead, resulting in better performance. One
negative aspect of containers that is often mentioned, when compared to
virtual machines, is the lower isolation of environments. However,
isolation may have a negative impact on the scheduling policy of the
host. So, as a future study, we propose the analysis of container
application affinity and comparison to traditional virtual machines. This
may help to ascertain how much isolation is affecting performance, and
test if the affinity aware scheduling model can contribute to better
container based cloud use.

As previously mentioned, the present work adopts a single hypervisor
(KVM) for all experiments and validations, as it is common for cloud
providers to adhere to a single virtual machine monitor solution.
However, the possibility of allocating an application paired with a
hypervisor better suited for its workload could indeed benefit the
performance of the application. Also, the possibility of live-migration
when an application changes its usage profile could also be applied to
reallocate it, not only based on the affinity of co-allocated VMs, but also
based on the VMM best suited for the new profile. Further studies in this
topic could prove useful for the adoption of cloud based HPC.

Acknowledgment

The authors would like to acknowledge CAPES(Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho
Nacional de Desenvolvimento Científico e Tecnológico) FAPERJ
(Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio
de Janeiro) for their financial support. The authors would also like to
thank ComCiDis/LNCC for generously lending the necessary equipment
for this research.

References

[1]. C. Evangelinos, C. Hill, Cloud computing for parallel scientific HPC
applications: Feasibility of running coupled atmosphere-ocean climate
models on Amazon’s EC2, Ratio, Vol. 2, Issue 40, 2008, pp. 2-34.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

172

[2]. Y. Xing, Y. Zhan, Virtualization and cloud computing, in Future Wireless
Networks and Information Systems, Springer, 2012, pp. 305-312.

[3]. Z. Zheng, X. Wu, Y. Zhang, M. R. Lyu, J. Wang, QoS ranking prediction
for cloud services, IEEE Trans. Parallel Distrib. Syst., Vol. 24, Issue 6,
June 2013, pp. 1213-1222.

[4]. P. Luszczek, E. Meek, S. Moore, D. Terpstra, V. M. Weaver, J. Dongarra,
Evaluation of the HPC challenge benchmarks in virtualized environments,
in Homogenizing Access to Highly Time-Consuming Biomedical
Applications through a Web-Based Interface, Springer-Verlag, Berlin,
Heidelberg, 2012, pp. 436-445.

[5]. D. Yokoyama, V. Dias, H. Kloh, M. Bandini, F. Porto, B. Schulze,
A. Mury, The impact of hypervisor layer on database applications, in
Proceedings of the IEEE/ACM Fifth International Conference on Utility
and Cloud Computing (UCC’12), Washington, DC, USA, 2012,
pp. 247-254.

[6]. M. Alam, A. K. Varshney, A new approach of dynamic load balancing
scheduling algorithm for homogeneous multiprocessor system,
International Journal of Applied Evolutionary Computation (IJAEC),
Vol. 7, Issue 2, 2016, pp. 61-75.

[7]. D. Yokoyama, B. Schulze, H. Kloh, M. Bandini, V. Rebello, Affinity
aware scheduling model of cluster nodes in private clouds, Journal of
Network and Computer Applications, Vol. 95, 2017, pp. 94-104.

[8]. V. D. de Oliveira, J. Barbosa, M. Bandini, R. Pinto, B. Schulze, Alocação
de ambientes virtuais com base na afinidade entre perfis de aplicações
massivamente paralelas e distribuídas, in Proceedings of the Brazilian
Symposium on Computer Networks and Distributed Systems (SBRC’17),
May 2017.

[9]. A. R. Mury, B. Schulze, F. L. Licht, L. C. E. de Bona, M. Ferro, A
concurrency mitigation proposal for sharing environments: An affinity
approach based on applications classes, in Proceedings of the Intelligent
Cloud Computing: First International Conference (ICC’2014), 2014,
pp. 26-45.

[10]. F. L. Licht, Afinidade de Tipos de Aplicações em Nuvens Computacionais,
PhD Thesis, Departamento de Informatica, Universidade Federal do
Parana, Curitiba, PR, 2014.

[11]. D. R Page. Generalized algorithm for restricted weak composition
generation, Journal of Mathematical Modelling and Algorithms in
Operations Research, Vol. 12, Issue 4, 2013, pp. 345-372.

[12]. E. M. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms: Theory
and Practice, Prentice Hall College Div., 1977.

[13]. D. E. Knuth, The Art of Computer Programming, Fascicle 3: Generating
All Combinations and Partitions, Vol. 4, Addison-Wesley, 2005.

[14]. A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary, HPL – A Portable
Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers, Innovative Computing Laboratory,
2016.

Chapter 5. Affinity Aware Scheduler of Cluster Virtual Nodes on Clouds

173

[15]. H. Gahvari, M. Hoemmen, J. Demmel, K. Yelick, Benchmarking sparse
matrix-vector multiply in five minutes, in Proceedings of the SPEC
Benchmark Workshop, 2007.

[16]. M. Krietemeyer, Integrated Performance Analysis of Computer Systems
(IPACS), Benchmarks for Distributed Computer Systems, Logos-Verl,
Berlin, 2006.

[17]. M. Krietemeyer, M. Merz, IPACS Benchmark – Integrated Performance
Analysis of Computer Systems, Logos Verlag, Berlin, 2006.

[18]. M. Krietemeyer, D. Versick, D. Tavangarian, The PRIOmark parallel
I/O-benchmark, in Proceedings of the IASTED International Conference
on Parallel and Distributed Computing and Networks, 2005, p. 595.

[19]. M. K. Emani, M. O’Boyle, Celebrating diversity: A mixture of experts
approach for runtime mapping in dynamic environments, in Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’15), New York, NY, USA, 2015, pp. 499-508.

[20]. J. Schad, J. Dittrich, J.-A. Quiané-Ruiz, Runtime measurements in the
cloud: Observing, analyzing, and reducing variance, Proceedings of the
VLDB Endowment, Vol. 3, Issue 1-2, 2010, pp. 460-471.

[21]. M. Bolte, M. Sievers, G. Birkenheuer, O. Niehörster, A. Brinkmann,
Non-intrusive virtualization management using libvirt, in Proceedings of
the Conference on Design, Automation and Test in Europe (DATE’10),
Leuven, Belgium, 2010, pp. 574-579.

[22]. Y. Elkhatib, Mapping cross-cloud systems: Challenges and opportunities,
in Proceedings of the 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud '16), 2016, pp. 102-120.

[23]. M. L. Pinedo, Scheduling: Theory, Algorithms and Systems, 3rd Ed.,
Springer Publishing Company, 2008.

[24]. OpenStack Documentation Review Associate VM Placement, 2016.
[25]. Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, C. Pu, An analysis

of performance interference effects in virtual environments, in
Proceedings of the IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS’07), 2007, pp. 200-209.

[26]. C. Delimitrou, C. Kozyrakis, Paragon: QoS-aware scheduling for
heterogeneous datacenters, ACM SIGPLAN Notices, Vol. 48, 2013,
pp. 77-88.

[27]. I. S. Moreno, R. Yang, J. Xu, T. Wo, Improved energy-efficiency in cloud
datacenters with interference-aware virtual machine placement, in
Proceedings of the IEEE Eleventh International Symposium on
Autonomous Decentralized Systems (ISADS’13), 2013, pp. 1-8.

[28]. X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Franciosi,
W. Knottenbelt, Cloudscope: Diagnosing and managing performance
interference in multi-tenant clouds, in Proceedings of the IEEE 23rd
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS’15), 2015,
pp. 164-173.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

174

[29]. D. G. Feitelson, L. Rudolph, Metrics and benchmarking for parallel job
scheduling, in Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing (IPPS/SPDP’98), London, UK, 1998, pp. 1-24.

[30]. X. Jin, F. Zhang, L. Wang, S. Hu, B. Zhou, Z. Liu, Joint optimization of
operational cost and performance interference in cloud data centers, IEEE
Transactions on Cloud Computing, 2015.

[31]. M. Rahman, P. Graham, Compatibility-based static {VM} placement
minimizing interference, Journal of Network and Computer Applications,
Vol. 84, 2017, pp. 68-81.

[32]. R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. de Rose, R. Buyya,
CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,
Software: Practice and Experience, Vol. 41, Issue 1, 2011, pp. 23-50.

[33]. B. Simmons, A. McCloskey, H. Lutfiyya, Dynamic provisioning of
resources in data centers, in Proceedings of 3rd International Conference
on the Autonomic and Autonomous Systems (ICAS’07), 2007, p. 40.

[34]. A. Nanos, G. Goumas, N. Koziris, Exploring I/O virtualization data paths
for MPI applications in a cluster of VMs: A networking perspective, in
Proceedings of the European Conference on Parallel Processing
(Euro-Par’10), 2010, pp. 665-671.

[35]. F. Fernandes, D. Beserra, E. D. Moreno, B. Schulze, R. C. G. Pinto, A
virtual machine scheduler based on CPU and I/O-bound features for
energy-aware in high performance computing clouds, Computers &
Electrical Engineering, Vol. 56, 2016, pp. 854-870.

[36]. W.-C. Feng, H. Lin, T. Scogland, J. Zhang, OpenCL and the 13 dwarfs: A
work in progress, in Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering (ICPE’12), New York, NY,
USA, 2012, pp. 291-294.

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

175

Chapter 6

DDoS Attack Protection in the Era
of Cloud Computing and Software-
Defined Networking

Bing Wang, Yao Zheng, Wenjing Lou and Y. Thomas Hou1

6.1. Introduction

As cloud computing provides on-demand, elastic, and accessible
computing services, more and more enterprises begin to embrace this
paradigm shift by moving their database and applications into the cloud.
At the same time, another epochal concept of the Internet architecture
comes to forefront, i.e., Software-Defined Networking (SDN). While
cloud computing facilitates the management of computation and storage
resources, SDN is proposed to address another laborious issue hindering
the evolvement of today’s Internet, i.e., the complicated network
management. Besides the fact that SDN has been proposed as a candidate
of the next generation Internet architecture, companies like Google have
already adopted SDN in their internal data centers. Thus, the arrival of
the era when cloud computing and SDN go hand-in-hand in providing
enterprise IT services is looming on the horizon.

Besides all the widely perceived benefits, the marriage between cloud
computing and SDN may also introduce potential risks, especially on
network security. Among all the network security problems, we first take
a look at Denial-of-Service (DoS) attack. A DoS attack and its distributed
version, Distributed Denial-of-Service (DDoS) attack, attempt to make a
service unavailable to its intended users by draining the system or
network resource. Although network security experts have been devoting
great efforts for decades to address this issue, DDoS attacks continue to

Bing Wang
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

176

grow in frequency and have more impact recently. Existing DDoS attack
defense solutions (to list a few [1-4]) assume a fully controlled network
by the network administrators of enterprises. Therefore, the network
administrators could place certain hardware pieces in the network to
detect or mitigate DDoS attacks. However, in the new network paradigm
of cloud computing and SDN, these assumptions no longer stand. Other
researchers [5, 6] focus on exploiting the benefits of cloud or SDN to
defend DDoS attacks. But their target victims still reside in the traditional
network environment, which makes their solutions unsuitable for the
new network paradigm. To the best of our knowledge, little effort in
research community has been made to look into the potential problems
or opportunities to defend DDoS attacks in the new enterprise network
environment that adopts both cloud computing and SDN.

In this chapter, we first analyze the impact of the combination of cloud
computing and SDN on DDoS attack defense. We discuss the potential
issues under this new paradigm as well as opportunities of defending
DDoS attacks. Based on our analysis, we claim that if designed properly,
SDN can actually be exploited to address the security challenges brought
by cloud computing and the DDoS attack defense can be made more
effective and efficient in the era of cloud computing and SDN. We then
propose a new DDoS attack mitigation architecture using
software-defined networking (abbreviated as DaMask) to demonstrate
and substantiate our findings. DaMask contains two modules: an
anomaly-based attack detection module DaMask-D, and an attack
mitigation module DaMask-M. We build our DaMask-D module based
on a graphical probabilistic inference model. Compared with existing
graphical model based detection schemes [7-9] which only have model
training and testing phases, our DaMask-D features an additional model
updating phase to address the dataset shift problem in the real world. The
dataset shift refers to the fact that the network traffic conditions when we
build the model differ from the actual traffic conditions when we use the
model. This fact varies from the common assumption used in the existing
works where the attack patterns learned from the training data are
assumed to be no different from the attack patterns in the future. Our
contributions can be summarized as follows:

1. To the best of our knowledge, we are among the first to bring the
attention of the impact on DDoS attack defense of the new network
paradigm, which is a combination of cloud computing and SDN. Based
on our analysis, we find that the marriage of SDN and cloud computing

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

177

provides an unique opportunity to enhance the DDoS attack defense in
an enterprise network environment.

2. To substantiate our claim, we propose DaMask, a highly scalable and
flexible DDoS attack mitigation architecture that exploits SDN
technique to address the new security challenges brought by cloud
computing, including the extended defense perimeter and the dynamic
network topological changes.

3. Our DaMask-D module in the DaMask architecture features an
additional model update phase, compared to existing graphical-model
based network attack detection schemes, which successfully handles the
dataset shift problem in the real world and achieves a higher
detection rate.

4. At last, we implement our proposed structure and performed a
simulation based evaluation using the Amazon EC2 cloud service. The
results show that our scheme works well under the new network
paradigm and incurs limited computation and communication overhead,
which is a crucial requirement of DDoS protection in cloud computing
and SDN.

Compared with our preliminary NPSec work [10] which presented the
DaMask framework, the journal version completes the DDoS attack
defense solution by including an attack detection system in Section 6.4.
The attack detection system which is based on the graphical model
detection is not only tailored to accommodate the unique requirement of
DDoS attack defending in cloud computing, but also manages to address
the data shift problem which decreases the detection performance in most
machine learning based solutions. We also add performance evaluation
results of the detection module in Section 6.5.3 including the
performance of detecting attacks and the ability of adapting the data shift
issue. We organize the remainder of the chapter as follows. We analyze
the impact of cloud computing and SDN on DDoS attack defense in
Section 6.2. Based on our analysis, we formulate the problem and present
our DaMask architecture design in Section 6.3. The technical details of
the DaMask-D module is discussed in Section 6.4. Section 6.5 presents
the simulation setting and the results. Related work are reviewed and
compared with our work in Section 6.6. We draw concluding remarks in
Section 6.7.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

178

6.2. Analysis

In this section, we briefly review cloud computing and SDN. Then we
analyze the impact of the combined technologies on the network
protection against DDoS attacks.

6.2.1. Cloud Computing

Cloud computing is a computing model which manages a pool of
configurable computing resources. Cloud computing can be categorized
as public cloud, private cloud and hybrid cloud in terms of deployment.
While public cloud and private cloud are used by public and a single
organization, respectively, hybrid cloud is a composition of public and
private cloud infrastructures. As a result, hybrid cloud share the
properties of both public cloud and private cloud. Hybrid cloud allows
companies keeping their critical applications and data in private while
outsourcing others to public. Thus, we focus on analyzing the impact of
hybrid cloud on DDoS attack defense.

6.2.2. Impact of Cloud Computing on DDoS Attack Defense

Nowadays, attackers can launch various DDoS attacks including
resource-focused ones (e.g. network bandwidth, memory, and CPU) and
application-focused ones (e.g. web applications, database service) from
almost everywhere. To be realistic, we have to assume attackers can
reside either in a private network, in a public network, or in both. To this
end, we find the following properties of cloud computing affect DDoS
attack defense.

1. Instead of users, cloud providers control network and computation
resources, i.e., physical servers. This property differs from the system
model in the traditional DDoS attack defense, where the protected
application servers are within the defender controlled network.

2. Resource allocation and virtual machine migration are new sources of
network topological changes from the defender’s view. Moreover, the
resource allocation and virtual machine migrations processes are
fast-paced. The DDoS attack defense must be able to adapt to a dynamic
network with frequent topological changes and still maintain high
detection rate and prompt reaction capability.

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

179

3. All cloud users share the same network infrastructure of the cloud.
This raises a reliable network separation requirement, which has not been
considered in traditional DDoS attack defense. The enterprise must
ensure its DDoS attack detection/defense operations neither affect nor be
affected by other cloud users.

We illustrate these impacts using the example in Fig. 6.1. To ease the
presentation, we denote an attacker in the private cloud of the enterprise
network as a local attacker, an attacker in the off-site public cloud of the
enterprise network as a cloud attacker, and other attackers as outside
attackers. Similarly, we refer a server in the private cloud as a local
server and a company’s server in the public cloud as a cloud server. We
consider two attacking scenarios. In the first attacking scenario, the
victim server is within the private cloud. In the second one, the victim
server resides in the public cloud.

Fig. 6.1. The structure of a hybrid cloud, consisting of one private cloud
and two public clouds. Five types of attack traffic are shown in the figure.

In the first attack scenario, there are two types of attack traffic, i.e.,
(1) and (2) in Fig. 6.1. The enterprise’s local DDoS attack defense system
can detect the attack traffic (2), while the detection of the attack traffic
(1) depends on whether the internal traffic is redirected to the DDoS
attack defense system. Nevertheless, this scenario is similar to the

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

180

traditional DDoS attack scenario. In what follows, we focus on two new
challenges introduced in the second attacking scenario.

The first challenge is raised by the public accessibility of the cloud
resources. We refer to this challenge as extended defense perimeter.
There are three types of attack traffic, (3), (4) and (5). The enterprise’s
local defense can only examine and filter out the attack traffic (3) before
the traffic leaves the local network. The defense offered by the cloud
provider can check the attack traffic (4). However, more advanced
attacks, such as the application-layer attacks which target specific
applications, can bypass the generic defense provided by the cloud. The
most stealthy attack is type (5) because it is initialized from the same
physical network or even the same physical machine on which the
application is running. Most of these traffic is handled at local switches
or hypervisors without going through the detection hardware.

The second challenge is raised by the rapid resource re-allocation. We
refer to this challenge as dynamic network topology. This challenge
makes the attack traffic (4) and (5) more difficult to handle because the
enterprise’s defense mechanism has to adjust to the network change
caused by the physical location change of the virtual machine. The
adaption must take effect in a short time period, for example, in
milliseconds thanks to advances in live migration technology [11].
Moreover, because most of the topology changes are done by cloud
provider without notifying the users, the DDoS attack defense
mechanism needs to communicate with the cloud service provider to
properly adapt the changes.

6.2.3. Software-Defined Networking

Unlike the well formatted data plane abstraction in the OSI model, the
control plane of the Internet is composed of various complicated
protocols for various network functions. Managing these protocols in a
distributed manner becomes inefficient and error-prone. SDN is a
network architecture that decouples the control plane and the data plane
of network switches and moves the control plane to a centralized
application called network controller. The network controller is in
charge of the entire network through a vendor-independent interface
such as OpenFlow [12], which defines the low-level packet forwarding
behaviors in the data plane. Developers then can program the network
from a higher level without concerning the lower level detail of packet
processing and forwarding in physical devices.

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

181

6.2.4. Impact of SDN on DDoS Attack Defense

The most important two concepts of SDN are control plane abstraction
and network function virtualization. They introduce following
properties.

 Centralized network control: The centralized network operating
system (NOS) connects to all the switches in the network directly.
Thus, NOS can provide a global network topology along with the
real-time network status.

 Simplified packet forward: The data plane in SDN simply forwards
packets based on the forwarding policies generated by control
programs.

 Software based network function implementation: Network functions
originally implemented within a switch or a middle-box are
implemented as control programs in SDN. These control programs
reside above the NOS and communicate with switches remotely.

 Virtualized network: Similar to a hypervisor in hardware
virtualization, the network virtualization hides the network topology
from control programs so that network function developers can focus
on the functionality implementation.

Implementing SDN affects the DDoS attack defense greatly in both
directions. On the bright side, SDN makes advanced detection logic and
rich subsequent processes easier to implement. On the downside, the
devices or middle-boxes originally distributed within the network now
need to be located above NOS. Compared with hardware-based packet
processing, software processes packets is much slower. The network
delay and traffic overhead caused by the communications between the
control program, i.e., the DDoS attack defense schemes, and the
switches, may become the new attack surface.

6.2.5. DDoS Attack Defense in Cloud Computing and SDN

Based on our analysis, cloud computing introduces new DDoS
challenges, i.e., extended defense perimeter and dynamic network
topology due to its new operation model. To effectively address these
challenges, the cloud provider must be able to 1) Easily delegate the
control of its network to cloud users; 2) Fast re-configure the control

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

182

according to the network topology changes caused by dynamic
allocations and migrations. On one side, we could benefit from the
centralized network controller and the network virtualization of SDN.
On the other side, SDN influences DDoS attack defense in negative ways
as we discussed early. The negative impact of SDN mainly comes from
the efficiency of processing packets using software, which may generate
new attack surface and lead to single-point failure. When designing a
DDoS attack defense solution in SDN, one must take the computation
and communication overhead into the consideration so that no new
security vulnerability is introduced. To sum up, we believe SDN
technology will benefit the DDoS attack defense in cloud computing as
along as the design could carefully handle the communication and
computation overhead.

6.3. DaMask Design

6.3.1. Design Overview

Based on the analysis in Section 6.2, we need to incorporate the DDoS
attack defense into cloud computing and SDN. To successfully address
the DDoS attack defense challenges in the new network environment, we
must achieve the following objectives. First of all, the scheme must be
effective. The design should be able to protect the services in both private
and public clouds. It also should be able to adapt to the network topology
changes and mitigate DDoS attacks efficiently. Secondly, the scheme
should incur small overhead. The communication and computation
overhead introduced by the architecture should also be limited to a small
amount to be practical. Lastly, the deployment cost should be
inexpensive. The solution should require as little deployment cost, such
as additional hardware or changing existing protocols for both
enterprises and cloud service providers, as possible.

To address the first challenge, our idea is to separate the enterprise’s
network traffic from the main network by virtualizing the network. We
call such a virtual network a slice. Then we let the cloud provider
delegate the slice to the owner of this slice. Similar with the hardware or
platform virtualization, a slice contains the network flows related to the
enterprise only and is isolated from other slices. The strong isolation
between different slices ensures that a slice is visible to its belonging
company only. Therefore, operations performed on the slice are
transparent to other cloud users.

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

183

For the second issue, we should select an efficient attack detection
algorithm which involves as little information as possible to reduce the
communication overhead. Meanwhile, the detection process itself must
be fast enough to incorporate with the packet forwarding speed. Existing
DDoS attack detection algorithms could serve the purpose as long as it
does not depend on certain hardware. It is also worth mentioning that
signature-based detection or anomaly-based detection or even a
combined detection scheme can be used here.

To cope with the last issue, we need a rapid re-configuration scheme for
each slice in the cloud. Given the nature of a virtualized slice, which is
defined by its profile, our idea is to re-configure each slice profile when
the virtual machine migration is taking placing. Because the cloud
provider virtualizes the network, he can track all the enterprises’
controllers, and re-configure the profile of a slice when a migration is
about to happen. By applying the new slice profile, the cloud provider
ensures the right enterprise getting the control of the proper slice.

6.3.2. Workflow of DaMask

To substantiate our previous claim, we propose a DDoS attack mitigation
architecture, named DaMask. The DaMask architecture has three layers,
network switches, network controller, and network applications. The
main functions of the DaMask are DDoS detection and reaction. There
are two separate modules in the DaMask, DaMask-D, a network attack
detection system, and DaMask-M, an attack reaction module. We present
the workflow of DaMask in Fig. 6.2.

Fig. 6.2. Workflow of DaMask.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

184

6.3.2.1. DaMask-D Module

The DaMask-D module is an anomaly-based attack detection system.
We argue that although signature-based attack detection could also work,
they are not efficient. The reason is that, in SDN, the responsibility of
generating a packet signature moves from a switch or a middle-box to a
remote control program, which not only processes slower than hardware,
but also requires all the packets to be redirect to it. Therefore, we focus
on anomaly-based detection. Now we assume we already have a
detection algorithm implemented (this can be done in an offline process
as shown in Fig. 6.2).

In online phase, when a new packet arrives at the switch, the cloud
provider first decides which slice the packet belongs to. Then the cloud
provider notifies the corresponding NOS of the slice. After receiving the
notification, the slice owner’s NOS checks whether the packet belongs
to an existing flow1. If so, it updates the flow statistic, otherwise it build
a new flow record. Then we query the detection model with the updated
or the new flow static. If the query result indicates an attack, DaMask-D
issues an alert and forwards the alert along with the packet info to the
DaMask-M module. If the query result is normal, the packet is forwarded
to its intended destination. Occasionally, the detection model cannot
determine the attack type of a packet if the packet belongs to a new type
of attack. In that case, the packet needs to be further analyzed. The
analysis result is then used to update the detection model through a model
updating process.

6.3.2.2. DaMask-M Module

The DaMask-M module is an attack reaction system. In the existing work
of DDoS protection in today’s Internet, the reaction options are simple
and limited, because advanced post-processing logic requires switches
working together in a distributed manner. Implementing and managing
such functions are time-consuming and error-prone. In SDN, we can
implement those sophisticated logic such as quarantine of different types
of packets to different location thanks to the control plane abstraction.
The DaMask-M contains two functions: countermeasure selection and
log generation. When DaMask-M receives an alert, it tries to match the
alert to a countermeasure. The default action is to drop the packet if there

1 The flow definition varies for each slice according to different requirements
of enterprise.

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

185

is no pre-set policy for the alert. We implement DaMask-M as a set of
common APIs so that defenders can customize their own defense
countermeasure for different DDoS attacks. The basic unit a defender
can play with is flow. We define three basic operations, forward, drop
and modify to form advanced defense logic. Compared with DDoS attack
mitigation in traditional network, DaMask-M provides a powerful way
to implement the countermeasure. After the countermeasure is selected,
DaMask-M pushes the policy to the switch through network controller.
After that, the attack packet, along with its auxiliary information (e.g. the
time stamp and response actions), is recorded in the log database.

6.4. Graphical Model Based Detection System

In Section 6.3, we state that an anomaly-based network attack detection
system will fit our DaMask framework well. In this section, we propose
our attack detection system which is built on probabilistic inference
graphical model. Although other existing attack detection systems are
compilable with DaMask, our detection model advances with two
features: 1) Automatic feature selection; 2) Efficient model update. By
updating our model efficiently, we are able to address the dataset shift
problem which is not considered in the existing schemes.

6.4.1. Graphical Inference Model

The core of the attack detection system is a graph model. It stores known
traffic patterns as a relational graph between patterns and their labels
(malicious or normal). When new network traffic arrives, the system uses
this graph to determine whether it is malicious.

6.4.1.1. Automatic Feature Selection

To build the model for network traces, a set of features must be extracted
from the network traces. In traditional anomaly-based detection systems,
features are picked heuristically based on the designers’ experience.
Although experts can provide valuable insight, they may also introduce
inevitable bias due to their limited knowledge. A more objective way is
to spawn a large candidate feature set and let the data decide which
features are relevant. We exercise feature selection [13] on a large feature
set. Considering the fact that network traffic is usually low dimension

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

186

data (the number of cases is far greater than the number of features), the
Chow-Liu algorithm [14] is a good choice because it surpasses other
algorithms when learning from low dimension data [15].

Denote 1 2= (, , ,)nX X X as the feature set, the Chow-Liu algorithm

works as follows: 1) Initialize an edgeless graph (= , =)G V E  with

each vertex corresponding to a feature;
2) For each pair of features ,i jX X  , perform an independency test

using mutual information as the deviance measures:

(,)

(,) = (,) log ,
() ()i j

a X b Xi j

p a b
I X X p a b

p a p b 

 
 
 

 

where ,a b take all the possible values of features ,i jX X respectively.

The result is a weighted graph where the weight of an edge (,)i je X X is

(,)i jI X X ; 3) we compute a maximum spanning tree from the graph as

the Chow-Liu tree. Since most relevant features are directly connected
in a Chow-Liu tree, we exclude the redundant features from the model.

6.4.1.2. Attack Detection

Upon receiving new network traffic, the system collects only those
features selected by the Chow-Liu algorithm. In our design, all features
we selected are observable, i.e., their values can be directly extracted
from the packet content or flow statistic. Let the set of features 
observed from a network flow is a subset of  , Y is the class label of
that flow, and = Y    be those features that are not observable,
such as encrypted payload. The attack detection process is a maximum a
posterior (MAP) query, i.e., finding the optimal assignment to all of the
(non-evidence) features Y  given the evidence = e :

,

(, |) = arg (, |).max
y w

MAP Y e P y w e

When all features are observed, i.e., =  , the MAP query further
reduces to a conditional probability query:

(,)

(|) = .
()

P Y e
P Y e

P e

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

187

6.4.2. Graph Model Update

Most of the existing works assume that the actual attack patterns follow
the same true distribution as in training dataset. Sadly, it is not true. In
reality, the traffic pattern is influenced a lot by temporal and spatial
factors [16]. The problem is known as dataset shift problem [17].

To cope with the dataset shift in network traffic data, the system should
tune the graph model based on new observed data. We consider two
types of update depending on the deviance between new attack patterns
and existing ones. If the deviance is large, a global update is required,
which searches a new graph structure. However, the global update is too
costly to be performed frequently. Therefore, when the deviance is small,
we perform a local update, which updates the conditional probability of
the nodes in the graph model.

The idea of the local update is to estimate the ()P Y , i.e., the distribution

of the traffic types (normal or malicious), based on the newly observed
data. Then we can use the new ()P Y to update the conditional

probability distribution (CPD) of the features used in the attack
detection. The local update process is efficient because it does not
involve the graph structure change. In our scheme, the variable Y
indicating the traffic type follows a multinomial distribution with k
parameters 1 2q = (, , ,),kp p p k   . We use a point estimator to

estimate the q using the newly observed data. The process works as

follows. First, we model (q)P using a Dirichlet distribution with

parameters 1 2a = (, , ,)k   as

 a 1

1

(a)
(q | a) = .

(a)

k

ik

k
Dir p 

 

Then we use the following equation to estimate the parameters q for

()testP Y , i.e., the new distribution of variable Y .

q

(| q) (q)
(q |) = ,

(| q) (q)

P E P
P E

P E P

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

188

where E is the newly observed data.

 (q |) (q | a),P E Dir 

where 1 1 2 2a = (, , ,)k kN N N      , iN is the data count in the new

observation, of which Y values are equal to iy . At last, the parameters
q for ()testP Y can be easily estimated as

  = , , , .k
i

N
i i k i

N
   

This equation indicates that we can update our graph model by only
updating the local conditional probability of each variable connected
with the attack type Y in the graph model, which is
computationally inexpensive.

Theoretically, updating the local CPD is enough if the underlying graph
structure captures the relationship among the variables precisely.
However, the precision of the graph structure is hard to measure in
reality. If the time interval between the local update and the last global
update is relatively short, the estimation result is good enough to
approximate the joint distribution. We further study the impact and
present the results in Section 6.5.

6.5. DaMask Evaluation

We carried out a thorough performance evaluation of the DaMask
architecture under various scenarios. We run detection accuracy test on
our attack detection system using real world network traffic The
evaluation results are reported in this section.

6.5.1. Evaluation Setting

To evaluate the performance of the DaMask, we have set up a hybrid
cloud. We use Amazon Web Service EC2 as our public cloud while we
simulate the private cloud in our lab. The overall evaluation environment
is shown in Fig. 6.3. We utilize Mininet [18], which creates a realistic
virtual network on a computer, to emulate the SDN setting.

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

189

Fig. 6.3. The simulated hybrid cloud topology.

6.5.1.1. Private Cloud

The private cloud consists of two Linux servers in our lab. Both of them
are running Ubuntu 12.10 32-bit operating system. One laptop (denoted
as Linux A), which equips with AMD E1-1200 2 at 1.4 GHz CPU and
4 GB memory, emulates the private cloud. The other desktop (denoted
as Linux B) equips with Intel i7-2600 CPU at 3.4 GHz and 12 GB
memory runs the network controller and DaMask with our attack
detection system on it. Linux A and Linux B are connected through a
Intel Express 460T 100 MB switch. We choose Floodlight [19] as the
network controller since Floodlight controller can be easily extended and
enhanced through its module loading system.

We emulate a virtual network using Mininet in Linux A to extend the
private cloud. The private cloud in Fig. 6.3 has one switch and two hosts.
One of the hosts is an web server (Apache Http Server 2.2.26). The
Floodlight controller and the DaMask modules are deployed in Linux B.
The DaMask modules communicate with the controller through
Floodlight’s APIs.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

190

6.5.1.2. Public Cloud

To measure the communication cost of DaMask, we use the Amazon
Web Service (AWS) EC2 as our public cloud in our evaluation. We
deployed two AWS EC2 instances as the company’s remote web servers.
Both of them are Ubuntu T1-Micro instances. One of them (denoted as
EC2West) is located at US West (Oregon) and the other (denoted as
EC2East) is located at US East (N. Virginia).

We use EC2West, which runs FlowVisor to handle network
virtualization, to simulate the network administration of the public cloud.
We emulate a virtual network in EC2East to extend the remote side of
the company’s network, which is the public cloud part in Fig. 6.3. Similar
with the private cloud extension, the extended public cloud also has one
switch and two hosts, one of which is an Apache web server. The
difference is that the switch is connected to the FlowVisor in EC2West
instead of a network controller.

6.5.1.3. Evaluation Dataset

To evaluate the attack detection performance of our graphical model
based detection module, we adopt the UNB ISCX dataset [20]. The UNB
ISCX dataset labeled the DDoS attack network traffic, which means we
have ground truth of the traffic. We extracted 18 features from the
network traces. We divide the entire data set into ten equal shares. The
first partition and the last partition are used as the training data and the
testing data, respectively, while the other eight parts are used for the
online model update process.

6.5.2. DaMask Overhead

6.5.2.1. Computation Cost of Attack Detection

The computation overhead comes from three aspects: 1) The offline
graphical model training process; 2) The online testing process; and
3) The model updating process. We implemented DaMask-D module
using R language and trained the model with the UNB ISCX dataset.
Fig. 6.4 shows the computation costs of the model building process.

As we mentioned before, the network traffic pattern difference between
the training phase and the testing phase leads to inaccurate detection

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

191

result in practice. We evaluate the overhead of local update as follow.
First, we use 10 % of the data as the training data, 10 % of the data as
the testing data and divide the remain data to 8 update datasets. Then we
use the training dataset to generate a model, denoted as basic . After
that, we perform a global update and an iterative local update using the
updating datasets to get two new models, denoted as global and local

respectively. The computation time of both processes is shown
in Fig. 6.4.

Fig. 6.4. Running time v.s. # of the training data.

From the figure, we can see the model generation time is a linear function
with respect to the number of data in the dataset; while the local update
time is only related to the number of the data in the new observation. The
simulation result validates the claim we have made in Section 6.4.2, i.e.,
the cost of a local update is much cheaper than the cost of a global update.
We delay the detection accuracy comparison between global update and
local update in 5.4.

6.5.2.2. Communication Overhead

DaMask introduces communication overhead since now the traffic
towards the servers in the public cloud needs to be examined by the
DaMask-D module located at the enterprise’s local network. To evaluate
the communication overhead, we carried out several experiments.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

192

We first measured the network bandwidth of our evaluation
environment. We measure the network bandwidth by running iperf
2 times a hour for a consecutive 24 hours. The average bandwidth
between Linux A and EC2West is 27.4 MB/s, and the average bandwidth
between Linux A and EC2East is 86.2 MB/s. The connection between
Linux A and EC2East is better because our lab is located at east coast.
We then tested the response time from the remote server with and
without DaMask being deployed. We show our result in Table 6.1. The
results show that the communication overhead is only related to the
round trip time between the server running the FlowVisor in the public
cloud and the server running the network controller in the private cloud.
This is because we fixed the size of the message to be sent to the network
controller. Therefore, the communication overhead is a constant if the
link status of network is stable.

Table 6.1. Communication time.

Task Basic DaMask w/o Test DaMask w/ Test
 West East West East West East
Ping 196 ms 12 ms 425 ms 51 ms 462 ms 85 ms
Http 2.4 s 1.7 s 2.3 s 1.6 s 2.4 s 1.6 s

6.5.3. Adapting Topology Change

One advantage of DaMask is that DaMask is able to adapt the network
topology change caused by virtual machine migrations. To simulate the
migration process, we added an additional switch, i.e., switch B in
Fig. 6.3. Suppose the web server is migrated from the switch A to the
switch B, DaMask need taking control of the switch B while dropping
control of the switch A since the switch A no longer belongs to the
company’s slice. Such re-configuration is accomplished by changing the
flow space header of the company’s slice in FlowVisor.
Re-configuration in FlowVisor can be efficiently done through
Command Line Interface (CLI) of FlowVisor. Since FlowVisor can
reload the new slice configuration without interrupting the service, this
process can be done in real-time.

After changing the flow space of the company’s slice, we sent ICMP
packets to the web server that is attached to the switch B. All the ICMP
packets were received by the company’s controller, which verifies the

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

193

company indeed had the control of the switch B. We further tested if the
company’s control slice affected other users. We sent ICMP packets to
the web server linked with the switch A and none of the packet was
received by the company’s controller, which means the FlowVisor did
not forward any ICMP packet to the company’s network controller.

6.5.4. Detection Performance

6.5.4.1. Data Shift

We first use the data set to demonstrate that there exists data shift issue
in network traffic. In practice, the detection model is built with a training
set which is always a per-collected traffic data while the detection is
performed over new traffic data. In our simulation, we use part of the
data as training data to build the model, i.e., basic . We also build a

model, i.e., global . As shown in Fig. 6.5, the model is different. Indeed,

the attack traffic features different characteristics during different period
as mentioned in [20]. Therefore, it is necessary to update the detection
model in real-time to ensure the detection performance.

Although performing a global update, i.e., building a new model based
on the new observation data, solves the data shift issue, it is always too
expensive to adopt in reality. Our approach which is update the CPDs on
the original model mitigates the impact of the issues and therefore,
improves the detection accuracy as demonstrated in next subsection.

6.5.4.2. Accuracy

The last evaluation is to test the detection accuracy of our attack
detection system.

Table 6.2 shows the detection rates for all three our models, basic ,

global and local . The detection rate is the number of detected attacks

divided by the number of total attacks. The miss detection rate is the
number of missed attacks divided by the number of total attacks. We also
reported the false positive rate and the true positive rate in the form of
ROC curve in Fig. 6.6.

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

194

(a) Local update

(b) Global update

Fig. 6.5. Graph structures.

Table 6.2. Detection accuracy.

 Detection rate Miss detection rate

basic 74.02 % 25.98 %

local 86.56 % 13.44 %

global 89.30 % 10.70 %

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

195

Fig. 6.6. ROC curves for basic (GM), global (update both CPDs

and structure) and local (update CPDs only) and CTBN.

As we expected, there is a performance degradation between training and
testing set due to the data shift. Such degradation can be remedied by
both local or global updates. local performs better than basic but a

little worse than global . This is because local update can only remedy

data shift deviation which is not big to change the model structure. Over
time, the data shift deviation will cause the structure change of the
underlying graphical model. At that time, a global update is needed. We
show the graph structure learned from the training data in Fig. 6.5. We
can see the feature selection property of our model from the figure, i.e.,
not all features are related to attack detection. And the graph model
structure trained through local update (Fig. 6.4)is different from the one
trained through global update (Fig. 6.4). It is worth mentioning that even
the underlying graph structure changes, the detection accuracy won’t be
degraded greatly.

6.5.4.3. Comparison

We first compare our detection scheme with the scheme in [9] which
used continuous time Bayesian network (CTBN). The ROC curve in
Fig. 6.6 shows that the performance of our method is similar to theirs.
However, our model excels in terms of smaller computational cost

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

196

because latent variables are included in CTBN. In order to learn such
variables, they used the EM algorithm which requires performing an
inference for each iteration. Compared to that, our design does not
contain any latent variables, and therefore does not need to perform
inference during learning. Also, our model enjoys higher expressiveness
compare to their CTBN template since we imposed less
structural constraints.

We also compare our detection results with Snort and Snort.AD. Snort is
a popular open-source, signature-based network intrusion detection
while Snort.AD is an anomaly-based preprocessor for Snort, which uses
Holt-Winters model to detect anomaly network behavior including
DDoS attacks. Snort reported 6.73 % attack packets because most of the
attack packets are well-formatted HTTP requests, which can bypass the
predefined signatures. Snort.AD, on the other hand, generated 23 more
alerts than Snort, but only two of them are real attack. The reason that
Snort.AD works poorly is due to the stealth of the application layer
DDoS attack.

6.6. Related Work

Defending DDoS attack in traditional network has been studied for
several decades. The surveys [21, 22] have included most of these work.
Although our objective shares the similarity with them which is to defend
DDoS attacks, our network environment which involves cloud
computing and SDN is quite different from theirs. SDN technique has
been used to address various network security. Jafarian et al. [23]
proposed a random host mutation scheme using OpenFlow to achieve
transparent moving target defense in SDN. Porras et al. proposed a
security enforcement kernel for SDN in [24] to detect policy conflicts
within the switches. Yao et al. utilized the SDN architecture to validate
source addresses in [25]. The key difference between those work and
ours is that they try to address the traditional network security threats
using SDN to achieve better performance while we focus on the new
challenges in the new network paradigm. Recently, Shin et al. [26]
proposed an OpenFlow security application development framework,
FRESCO, to enhance the secure application development in SDN. In
contrast with FRESCO, our work focuses on DDoS attack challenges in
cloud computing, which requires additional functionalities such as
letting enterprises control the network slice other than those provided by
existing solutions.

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

197

A network intrusion detection system (NIDS) differentiates malicious
traffic from the benign traffic. There are two broad categories of IDSes:
signature-based IDS and anomaly-based IDS. Signature-based detection
systems, e.g. Snort, can detect known attacks by utilizing the signature
of those attacks. Such systems require frequent signature updates and
could only detect known attacks. Anomaly-based detection systems are
able to detect abnormal network traffics which could potentially be
attacks. Patcha and Park presented a survey of existing anomaly
detection techniques in [27]. One of the popular techniques in anomaly
detection is Bayesian network inference model, which has several
advantages for data analysis [28]. Kruegel et al. [7] proposed a Bayesian
classification algorithm to do intrusion detection by monitoring the
system calls. Gupta et al. [8] incorporated multiple detection layers, all
of which are Bayesian network based, to increase the detection accuracy.
Xu et al. [9] used a continuous time Bayesian network model, which
considers temporal sequence of events, to construct both network-based
and host-based intrusion detection systems. Although we use the
Bayesian network inference model to detect the DDoS attacks as well,
the major differences between those works and ours is that our graphical
model updates itself based on new observations continuously to address
the potential dataset shift issue.

6.7. Conclusion

Cloud computing is already here to stay and SDN is gaining increased
popularity. With both of the technology emerging as the future enterprise
IT solutions, it is worthwhile to look at the implications of the
combination of the two, particularly on the enterprise network security.
In this chapter, we analyze the impact of cloud computing and SDN on
DDoS attack defense. Based on our analysis, we identify the challenges
and the benefits raised by these new technologies. We claim that with
careful design, SDN could help with DDoS attack protection. To
substantiate our finding, we proposed our solution of defending DDoS
attack—DaMask architecture. Compared to the existing solutions,
DaMask requires little effort from the cloud provider which means few
changes are required from the current cloud computing service
architecture. The SDN-based network monitoring and control
mechanism allow companies to control and configure their defense
mechanisms in the cloud effectively without affecting other cloud users.
In addition, DaMask features a graphical model based anomaly detection

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

198

module. To enhance the detection accuracy, we proposed a model update
method that updates the inference model periodically using Bayesian
inference method. We also carried out a simulation study using real
network traces to evaluate the performance. The results show that our
proposed DaMask is successful in dealing with the new challenges
raised. The SDN-based network management can rapidly adapt to the
network topological changes. The detection algorithm is fast enough to
perform online packet inference and it achieves a high detection rate. The
proposed model update process saves a significant amount of time
compared to regenerating a model while suffering hardly any
performance loss in terms of detection accuracy.

Acknowledgment

We gratefully acknowledge funding support for this research from U.S.
National Science Foundation under grant CNS-1217889.

Reference

[1]. D. Geneiatakis, G. Portokalidis, A. D. Keromytis, A multilayer overlay
network architecture for enhancing IP services availability against DoS, in
Proceedings of the 7th International Conference on Information Systems
Security (ICISS’11), Kolkata, India, December 2011, pp. 322-336.

[2]. X. Liu, X. Yang, Y. Lu, To filter or to authorize: Network-layer DoS
defense against multimillion-node botnets, ACM SIGCOMM Computer
Communication Review, Vol. 38, Issue 4, 2008, pp. 195-206.

[3]. P. Mittal, D. Kim, Y. C. Hu, M. Caesar, Mirage: Towards deployable
DDoS defense for web applications, arXiv:1110.1060v2, August 2012.

[4]. W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis, V. Misra,
D. Rubenstein, Using graphic turing tests to counter automated DDoS
attacks against web servers, in Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS’03), 2003, pp. 8-19.

[5]. H. Wang, L. Xu, G. Gu, OF-GUARD: A DoS attack prevention extension
in software-defined networks, in Proceedings of the Open Network Summit
(ONS’14), 2014.

[6]. D. Kreutz, F. Ramos, P. Verissimo, Towards secure and dependable
software-defined networks, in Proceedings of the 2nd ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN’13),
2013, pp. 55-60.

[7]. C. Kruegel, D. Mutz, W. Robertson, F. Valeur, Bayesian event
classification for intrusion detection, in Proceedings of the 19th Annual
Computer Security Applications Conference (ACSAC’03), 2003,
pp. 14-23.

Chapter 6. DDoS Attack Protection in the Era of Cloud Computing and Software-
Defined Networking

199

[8]. K. K. Gupta, B. Nath, R. Kotagiri, Layered approach using conditional
random fields for intrusion detection, IEEE Transactions on Dependable
and Secure Computing, Vol. 7, Issue 1, 2010, pp. 35-49.

[9]. J. Xu, C. R. Shelton, Intrusion detection using continuous time bayesian
networks, Journal of Artificial Intelligence Research, Vol. 39, Issue 1,
2010, pp. 745-774.

[10]. B. Wang, Y. Zheng, W. Lou, Y. T. Hou, DDoS attack protection in the era
of cloud computing and software-defined networking, in Proceedings of
the 9th Workshop on Secure Network Protocols (NPSec’14) in Conjunction
with ICNP, Raleigh, USA, 2014, pp. 624 - 629.

[11]. C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
A. Warfield, Live migration of virtual machines, in Proceedings of the 2nd
Conference on Symposium on Networked Systems Design &
Implementation (NSDI’05), Vol. 2, 2005, pp. 273-286.

[12]. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling innovation in
campus networks, ACM SIGCOMM Computer Communication Review,
Vol. 38, Issue 2, 2008, pp. 69-74.

[13]. D. Kollar, N. Friedman, Probabilistic Graphical Models: Principles and
Techniques, MIT Press, 2009.

[14]. C. Chow, C. Liu, Approximating discrete probability distributions with
dependence trees, IEEE Transactions on Information Theory, Vol. 14,
Issue 3, 1968, pp. 462-467.

[15]. K. P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press,
2012.

[16]. K. Thompson, G. Miller, R. Wilder, Wide-area internet traffic patterns and
characteristics, IEEE Network, Vol. 11, Issue 6, 1997, pp. 10-23.

[17]. J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, N. D. Lawrence,
Dataset Shift in Machine Learning, MIT Press, 2009.

[18]. B. Lantz, B. Heller, N. McKeown, A network in a laptop: Rapid
prototyping for software-defined networks, in Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks (Hotnets-IX), 2010, 19.

[19]. Floodlight Openflow Controller, http://www.projectfloodlight.org/floodlight/
[20]. A. Shiravi, H. Shiravi, M. Tavallaee, A. A. Ghorbani, Toward developing

a systematic approach to generate benchmark datasets for intrusion
detection, Computers & Security, Vol. 31, Issue 3, 2012, pp. 357-374.

[21]. T. Peng, C. Leckie, K. Ramamohanarao, Survey of network-based defense
mechanisms countering the DoS and DDoS problems, ACM Comput.
Surv., Vol. 39 Issue 1, 2007, 3.

[22]. S. Zargar, J. Joshi, D. Tipper, A survey of defense mechanisms against
distributed denial of service (DDoS) flooding attacks, IEEE
Communications Surveys Tutorials, Vol. 15, Issue 4, 2013, pp. 2046-2069.

[23]. J. H. Jafarian, E. Al-Shaer, Q. Duan, OpenFlow random host mutation:
Transparent moving target defense using software defined networking, in

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

200

Proceedings of the 1st Workshop on Hot Topics in Software Defined
Networks (HotSDN'12), 2012, pp. 127-132.

[24]. P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, G. Gu, A security
enforcement kernel for openflow networks, in Proceedings of the 1st
Workshop on Hot Topics in Software Defined Networks (HotSDN'12),
2012, pp. 121-126.

[25]. G. Yao, J. Bi, P. Xiao, Source address validation solution with
OpenFlow/NOX architecture, in Proceedings of the 19th IEEE
International Conference on Network Protocols (ICNP’11), 2011,
pp. 7-12.

[26]. S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, M. Tyson, FRESCO:
Modular Composable Security Services For Software-Defined Networks,
in Proceedings of the ISOC Network and Distributed System Security
Symposium, 2013, http://www.csl.sri.com/users/vinod/papers/fresco.pdf

[27]. A. Patcha, J. M. Park, An overview of anomaly detection techniques:
Existing solutions and latest technological trends, Computer Networks,
Vol. 51, Issue 12, 2007, pp. 3448-3470.

[28]. D. Heckerman, A Tutorial on Learning with Bayesian Networks, Springer,
2008.

Index

201

Index

A

affinity, 133, 135-137, 140, 142-148,
150, 151, 153, 154, 156, 158-171

Affinity
 Aware Scheduler, 133, 136, 154
 value, 143, 151, 167
algorithms, 79, 80, 82, 85, 96, 97, 102
allocation model, 135, 145, 147, 169
Analog
 preprocessing blocks, 107
 to digital converter, 107
application-layer multicast model, 36,

39
Architecture Depended Models, 114
Attack Detection, 186
attack detection systems, 185

B

B_EFF, 145
bare metal, 155
Basic Local Alignment Search Tool,

142, 144
Bayesian
 classification algorithm, 197
 network, 197
Behavioral Error Models, 115
benchmarking, 17, 19, 32

C

Centralized network
 control, 181
 network operating system, 181
Chow-Liu algorithm, 186
Cloud computing, 133, 175, 178
cluster, 81, 83-87, 91, 92, 95
cluster computing, 133, 134
Collective Communication, 20-23, 25
Command Line Interface, 192
commercial off the shelf servers, 74
Communication

 Channel, 15, 17, 20, 21-26, 28, 31,
32

 Performance Models, 17
Computational Load Balance, 17
conditional probability distribution,

187
containee algorithm, 37, 43, 46, 47,

51, 52, 55, 56, 58, 63, 64, 66, 70
container algorithm, 37, 43, 47, 58,

59, 61-64, 66, 70
continuous time Bayesian network,

195
control plane abstraction, 181
coupons, 159
CPU Intensive, 142

D

DaMask, 177, 182
DAQ
 Error Models, 113
 Testing Methods, 110, 111
Data
 Mapping, 16-18, 26, 28-33
 Parallel Kernel, 15, 16, 23, 25, 26
 Shift, 193
dataset shift problem, 187
DDoS
 attack defense system, 179
 Attack Protection, 175
degree of affinity, 155, 159-163, 165,

169
Denial-of-Service (DoS) attack, 175
Deployment, 17, 22, 30
detection rate, 193
Differential nonlinearity

DNL, 109
diffusion, 79, 82, 95, 103
Dirichlet distribution, 187
Distorting harmonic components, 109
distributed, 79, 80, 82, 89, 91
Document Type Definition (DTD), 40
dynamic, 79, 80, 81, 82, 95
dynamic
 network topology, 180, 181

Advances in Computers and Software Engineering: Reviews, Book Series, Vol. 1

202

 query updates, 64
 Scheduling, 162

E

Effective number of bits
ENOB, 109

Error Model Identification, 118
Exponential Moving Average, 158
extended defense perimeter, 180
Extensible Markup Language (XML),

35

F

FirstAvailableScheduler, 147, 148,
152

FlowVisor, 192
Full scale range, 108
Functional, 82, 83, 85, 86, 102
FuPerMod, 19, 27, 32, 33

H

Heterogeneous Platform, 15-19, 25-
27, 31, 32

High
 code frequency component (HCF),

117
 performance and highly distributed

computing architectures, 133
 Performance Computing, 15, 16,

17, 19, 20, 27
High-Performance Linpack, 141, 144
Homomorphism, 40-42
HPL, 140-145, 150, 158, 161-163

I

instance, 135, 136, 138, 143, 146, 171
Integral nonlinearity

INL, 109
interval-based labeling, 36, 44, 45
IOzone, 140, 142, 144, 158, 161, 162

K

Kernel
Data Parallel Kernel, 15, 32

keyword-style queries, 42

L

load-balancing, 79, 80, 82, 83, 85, 88,
91, 96, 102

Low code frequency component
(LCF), 117

M

makespan, 81, 95, 96, 100, 101, 103
Mapping, 16, 20, 23, 24
Massively Parallel and Distributed

Computing applications, 135
Message Passing Interface, 136
Montage, 140, 142, 144, 158, 161, 162
movements cost, 81, 96, 97, 99-101,

103
MPI, 16, 17, 20, 22, 23, 25, 31
multinomial distribution, 187

N

nearest-neighbor approach, 80
NeighborhoodLB, 90-93, 96
network
 controller, 180
 function virtualization, 181
 intrusion detection system, 197
Nonstandardized testing signal, 118
number of branches, 68, 69, 71

O

off-line server, 64
on-line server, 64
OpenFlow, 180
Overhead Parameter, 20, 24, 25
overlay network, 80, 82, 84, 85, 87,

88, 91, 102

P

Parameters, 17, 20, 24-26, 31, 33
PARPAC, 140, 141, 145, 150
PARPACBench, 141
Partitioning, 18
Point-to-point Communication, 16, 20,

21, 24, 26
PRIOmark, 140, 141, 150, 151
PRIOMark, 145
private cloud, 189

Index

203

prob(*), 69
prob(//), 65, 69, 71
processing time for the containee

algorithm, 70
Processor Layout, 17, 19
public cloud, 190
publish/subscribe (pub/sub), 35

Q

Quantization noise, 109
query path length, 71
queue length, 81, 95, 96, 101, 103
Queues based Systems, 79

R

region code scheme, 36, 45
Resolution of DAQ, 108
response time, 81, 95-98, 101, 103

S

Signal to noise and distortion ratio
SINAD, 109

Software-Defined Networking, 175,
180

source tree, 37
Space Usage, 73
Static Scheduling, 160

T

target tree, 37
throughput, 79, 81, 95, 96, 97, 98,

101, 103
total number of existing queries, 71,

72
Transfer Time, 20, 21, 25, 31
Transition code level, 108
tree-structured query, 38, 42

TwigStack, 36, 38, 45, 46, 52, 55

U

Unified Error Model, 116

V

Virtual
 Machine, 135, 167
 Machine Monitor, 135
Virtualization, 134
Virtualized network, 181

W

weak composition, 137, 138

X

XML
 broker, 36, 39
 pub/sub, 35-38, 41, 44-47, 66, 74
 query containment, 40
XPath, 35-41, 43, 45-47, 50, 51, 56,

59, 65, 69, 72, 73
XPath query aggregation, 36, 37, 39,

41, 46
XSearch, 38, 41, 45, 47, 56, 58, 63-66,

70, 72-74

Y

Yfilter, 39, 65, 72


-Lop, 17-26, 30-33

