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Abstract: Novel ultrasensitive detectors in the wavelength range of λ = 5-50 μm have developed. The 
detectors are charge-sensitive infrared phototransistors (CSIPs) fabricated in GaAs/AlGaAs double 
quantum well structures. The devices serve as a phototransistor capable of counting single photons, 
while a function is similarly to CMOS image sensors. The excellent noise equivalent power  
(NEP = 6.810-19 W/Hz1/2) and specific detectivity (D* = 1.21015 cmHz1/2/W) are demonstrated for  
λ = 14.7 μm, which are by a few orders of magnitude superior to those of the other state-of-the-art 
detectors. These figures of merit persist up to 23K. Temperature dependence of the performance is 
studied and wavelength range expansion is attempted. The simple planar structure of CSIPs is feasible 
for array fabrication including future monolithic integration with reading circuits.  
Copyright © 2011 IFSA. 
 
Keywords: THz, Single-photon detector, Ultrasensitive, Temperature dependence, Wavelength range 
expansion. 
 
 
 
1. Introduction 
 
Far Infrared range (FIR, the wavelength range of λ=15-300 μm) and terahertz range (THz,  
λ =100-1000 μm) cover very wide spectral region compared to rather limited visible region  
(λ =0.3-0.7 μm). This vast spectral range, however, is now a frontier of science and technology [1-3], 
while the shorter and the longer spectral ranges have been extensively explored by optics and electrical 
engineering. The FIR-THz range provides an expanding research field of interdisciplinary science and 
technology [1-3], where wide-spread different areas meet and give impetus to each other. The relevant 
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areas include physics [4], electronics [5, 6], optics [7], chemistry [8], biology [9, 10], medicine [11], 
astronomy [12], environmentology [13], spectroscopy [7-10], imaging [4, 11, 12], security [14] and 
communication [15]. 
 
From the viewpoint of spectroscopy, the most remarkable feature of the FIR-THz range is the rich 
spectra of matters. This made possible firm identification of solid, molecules and chemical bondings 
through fingerprint like spectra. Another important feature of the FIR-THz radiation is that it is 
thermally emitted by every material at room temperature [1].This made FIR-THz radiation a unique tool 
for studying temperature distribution of matters and internal activity of the objects. Familiar application 
includes night vision, thermography, and astronomical observation. The combination of these – 
spectroscopy of spontaneous emission– can be a powerful method for studyng living bio-systems. One 
may observe inside biocells without touching, killing or modulating their natural active states. For 
detecting such extremely weak local emission, the passive microscopy requires ultra-sensitive detectors 
reaching photon-counting level. 
 
Differently from routinely used photon-counters in near-infrared or visible range, FIR-THz 
photon-counters are limited to semiconductor quantum devices, which are still under development 
[16-18]. A series of THz detectors in wavelength range of 100 μm - 1 mm have been realized by 
combining a quantum dot (QD) with a single electron transistor (SET) [16-18]. The detectors are applied 
to passive microscopy of electron systems [19-21] as well as to implementation of on-chip device [22], 
in which single THz photons are generated, propagated and counted. The application of these detectors 
to passive microscopy to room temperature object is, however, restricted because they need ultra-low 
temperatures (<1 K). In this sense, shorter wavelength (5-50 μm) may be attractive because detectors can 
be designed for higher temperature operation. 
 
In this paper, we describe novel ultra-sensitive detectors of 5-50 μm range developed by utilizing a 
double-quantum-well (DQW) structure [23-29]. The detectors are called charge-sensitive infrared 
phototransistors (CSIPs). We demonstrated single-photon detection as well as ultra-broad dynamic 
range (>106, from attowatts to beyond picowatts [27]). CSIPs can be operated reasonable temperatures 
(~25 K at 15 μm, depending on wavelength) [28]. The excellent noise equivalent power  
(NEP=6.8·10-19 W/Hz1/2) and specific detectivity (D*=1.2·1015cmHz1/2/W) are demonstrated for  
λ=14.7 μm, which are by a few orders of magnitude superior to those of the other state-of-the-art 
detectors. In addition, the simple planer structure is, similarly to CMOS sensors, feasible for array 
fabrication and will even make it possible to monolithically integrate with reading circuit. 
 
 
2. Detection Mechanism and Device Structure 
 
In CSIPs, an electrically isolated island of a QW is photoexcited to serve as a gate to a remote 
two-dimensional electron gas (2DEG) conducting channel. As schematically shown in Fig. 1 (a), 
photoexcited electrons escape the isolated QW island leaving holes behind. The photo electrons are 
driven to the 2DEG conducting channel yielding photocurrens. Another effect larger than this direct 
photocurrent arises from the positive charge left on the QW island, which, through capacitive coupling, 
increases the electron density in the 2DEG channel and thus its conductance. The effect persists until the 
excited electrons recombine with holes in the isolated island, serving as an amplification mechanism. 
CSIPs are thus charge-sensitive phototransistor, in which a QW island works as a photosensitive floating 
gate. 
 
The upper QW is so designed that the energy spacing between the ground subband and the first excited 
subband is ΔE =84 meV (wavelength of λ=15 m). When radiation with photon energy of ΔE is incident 
on the isolated QW, electrons are excited to the first excited subband, where the thin tunnel barrier layer 
stands as schematically depicted in Fig. 2 (b). The electrons, having tunneled out of the QW, fall down 
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the electrostatic potential slope in the graded barrier layer until they eventually reach the 2DEG channel 
to be absorbed there. This causes isolated QW island to be positively charged. Through capacitive 
coupling, the pile-up positive charge in the isolated island increases the electron density of the lower 
2DEG channel leading to an increase in conductance. 
 
To realize the scheme in the above, we fabricate devices (for a detection-wavelength of 15 μm) in a 
GaAs/AlGaAs modulation doped heterostructure crystal containing a GaAs QW and an inverse 
heterostructure as showing in Fig. 1 (c) [23]. The layers are grown by molecular-beam epitaxy on 
semi-insulating GaAs substrate: They consist of a 1μm thick buffer layer (Al0.3Ga0.7As 20 nm /GaAs  
2 nm superlattices), a Si doped (1·1018 cm-3) 10-nm Al0.3Ga0.7As electron-supply layer, a 30 nm 
Al0.3Ga0.7As spacer layer, a 50 nm GaAs lower QW layer, a 100 nm composition graded AlxGa1-xAs 
(x=0.01 →0.1) barrier layer, a 2 nm Al0.2Ga0.8As tunnel barrier, a 10 nm GaAs upper QW layer, a 20 nm 
Al0.3Ga0.7As spacer layer, a Si doped (1x1018 cm-3) 60-nm Al0.3Ga0.7As layer, and a 10 nm GaAs cap 
layer. For detecting radiation of around λ=30μm, the triangular barrier- upper QW region of crystal 
structure above is substituted by a 100 nm AlxGa1-xAs graded barrier with x=0 →0.035, 2 nm 
Al0.15Ga0.85As tunnel barrier, the Si-doped (2.5·1017 cm-3) GaAs upper QW with the thickness of 17 nm. 
Typical electron density, Ns, and mobility, μ, are around Ns =3·1011 cm-2 and μ=3x104 cm2/Vs (for 
undoped QWs) or 100 cm2/Vs (for doped QWs), respectively. 
 
 

 
 

Fig. 1. (a) Schematic representation of a CSIP as a photo-active FET ; (b) The energy diagram of DQW system; 
(c) Crystal structure for λ=15 μm. 

 
 

As shown in Fig. 2 (a), the device consists of a wet-etched DQW mesa, alloyed AuGeNi ohmic contacts, 
Au/Ti Schottky gates (the isolation gate and reset gate), and Au/Ti photo-coupler (antenna). The device 
is fabricated with standard electron-beam lithography technique. The two dimensional electron gas 
(2DEG) layer in the both of the QWs are normally connected by ohmic contacts, and can be electrically 



Sensors & Transducers Journal, Vol. 10, Special Issue, February 2011, pp. 60-70 

 63

isolated by biasing metal isolation gates as shown in Fig. 2 (b) where 2DEG layers are illustrated as blue 
planes. The antenna is used to cause intersubband transition by generating electric filed normal to the 
plane of the QW against the normally incident radiation. In actual practice of operation, the optimized 
metal-gate bias is found in gate-bias-dependent IV curve where photosignal reaches maximum 
amplitude as shown in Fig. 2 (c). The signal appears when FET is formed: upper QW is electrically 
isolated and the accumulated photoholes induce larger current flowing in the lower QW. The increasing 
slope for a time-trace of photo-induced current is proportional to a given photon flux as shown in the 
next section. The active areas of devices are freely defined in lithography. In Fig. 2 (a) and (b), the finger 
isolation gate is used to form series of floating gates with graded chemical potential witch allows more 
uniform capacitive coupling over the conducting channel even at the larger source-drain bias voltage for 
larger signal. The effect of source- drain bias and the size to the unit photon signal amplitude is 
mentioned in the next section. 
 
 

 
 

Fig. 2. (a) A microscope image of the device of 150  130 μm2; (b) Schematic representation of QWs and ohmic 
contacts. The upper QW is electrically isolated by negative biasing of surface gates; (c) I-V measurements of a 

CSIP with scanning gate bias VG. Photo signal appears under illumination when floating gate is formed. 
 
 
3. Device Performance 
 
Fig. 3 (a) shows the time-trace of photo-signal for different photon fluxes taken at 4.2 K with 
source-drain bias voltage of VSD=10 mV after applied reset pulse at t =0 s [26, 27]. The homemade 
all-cryogenic spectrometer is used for the measurement [27]. The system consists of a reliable 
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Joule-heating blackbody emitter, a parabolic mirror collimeter, a monochrometer made by 
gear-controlled rotating diffraction grating, and a CSIP. The whole spectrometer system is immersed in 
liquid helium, and shielded against background radiation of warmer (T=50 K-300 K) part of the cryostat. 
The upper QW of the CSIP is isolated with a gate bias of VG=-0.48 V and the reset pulse of 1μs duration 
is applied to one of the metal gates. The increase of photo-induced current is extremely slow for all the 
curves because the incident photon flux applied here is extremely weak. Fig. 3 (b) shows that the spectral 
response lies at wavelengths around λ=15 m, where the data is taken by studying the slope α=ΔI /Δt of 
photo-current increase as a function of the incident radiation wavelength (angle of the diffraction 
grating). 
 
In the limit of weak radiation, stepwise increase is noted as shown in Fig. 3(c) [25, 27]. This stepwise 
signal is successfully interpreted by assuming the increase of lower channel electron density, ΔNs, is 
equal to the density of photoholes in upper QW, p / LW, where p is the number of photoholes and L is the 
length of active area along the channel, and W is the width of active area across the channel. The 
relationship j=σε with the increase of two-dimensional current density, j=∆I/W, the electric field by 
source-drain bias voltage, ε=VSD/L, and the phohole-modulated two-dimensional transconductivity, 
σ=eμ∆Ns, gives [25, 27]. 
 
 

 
 

Fig. 3. (a) Time traces of the photo current ΔI obtained with different incident photon fluxes and a SEM 
micrograph of the device with an active area of 16  4 μm2. (b) The detection spectrogram.  

(c) Magnified time traces taken with the lowest photon flux (BBR emitter at 50K). 
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where Ie is the unit increment of current due to one photohole. The observed step amplitudes for L  
W=16  4 μm2 device, ΔISETP= 3 pA substantially corresponds to the expected single-photon signal, 
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Ie=2.8 pA by (1). Obviously, smaller device with small L produces larger unit signal -clearer steps- as 
demonstrated in [25]. It should be noted that in proper detection condition, the lifetime of a photohole is 
longer than the measurement period by which the slope α=ΔI /Δt of photo-current is proportional to 
photon flux Ф. When the measurement period is longer than the lifetime, the increase of ΔI levels off as 
shown in the flat region of time-traces in Fig. 3(a). Therefore in the actual practice of the operation, reset 
frequency is tuned so that the detector produces only linear responses in a given photon flux range. The 
photo-current saturation mechanism will be discussed in the next section. 
 
By using (1), the photon-count-rate (α/Ie) can be replotted from Fig. 3 (a) as a function of Φ (Fig. 4) [27]. 
By heating the BBR emitter from T=50 to 250 K, Φ increases from a level of 3  10/sec to 1  108/sec. 
The dynamic range of detection exceeds 106 in the measurement, but the true dynamic range may be 
higher since the highest photon flux is restricted by the emitter in the measurements. The quantum 
efficiency is directly determined to be η=2 %. Resent improvement of quantum efficiency to be 7 % will 
be discussed in Sec. V [29]. 
 
Considering the dark count rate of Γ=0.5 s-1, we determine the noise equivalent power of NEP= hν 
(2Γ)1/2 / η =6.810-19 W/Hz1/2, and the specific detectivity of D*=(WL)1/2 / NEP = 21015 cm Hz1/2 /W 
for the integration time of 1 s [27]. These values may be by a few orders of magnitude better than any 
other devices reported in the 15 micron wavelength region, e.g. D*=1012 cm Hz1/2 /W is one of the best 
value reported for QWIPs (quantum-well infrared photo-detectors) operated at T=4.2 K [30]. 
 
 

 
 

Fig. 4. Count rate of the photo signal vs. photon flux Φ. 
 
 
The value of D* for CSIP is much higher than 300K-photon-noise limited performance, which will meet 
the requirements for high-resolution real-time passive imaging of RT small objects, e.g., living bio-cells. 
Recently CSIPs have been applied to the construction of a highly sensitive passive microscope [31, 32]. 
 
 
4. Temperature Dependence of the Performance 
 
Higher temperature operation is desired for practical applications. There is in general, however, a 
trade-off between high sensitivity of an IR detector and operation temperature. The external constraint is 
that sensitive devices are saturated by strong background blackbody radiation from surrounding 
materials. The internal constraint is that the thermionic emission inside the device becomes equivalent to 
photo-emission. The former may be determined by optical setup, as well as relative intensity of signal 
radiation to the background. Here, we discuss the latter intrinsic constraint. 
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In Fig. 5, time traces of photo-current at different temperatures are displayed under the fixed photon flux 
Φ=1105 s-1[28]. The temperature effect appears as the lower amplitude of photo-current saturation. It 
should be noted that the slope, α=ΔI/Δt=ηΦIe, in the initial stage of each trace is independent of T, 
assuring that ηIe is independent of T. This means higher frequency reset operation is required, i.e., the 
integration time is shortened, in the elevated temperatures. The photo-signal is discernible up to 30K for 
the CSIP of λ= 15 μm. The derived NEP and D* up to T=23 K with integration time of 1s are given as 
NEP=8.310-19 W/Hz1/2, and D*=9.61014 cm Hz1/2 /W [28], which are not very different from the 4.2 K 
values mentioned above. 
 
 

 
 

Fig. 5. Time traces of the photocurrent with Φ=1105 s-1 at different temperatures. 
 
 
The understanding of photo-current saturation directly leads to temperature dependent physics inside the 
device. The potential profile changing in the detection is shown in Fig. 6. The potential height of the 
triangular barrier in equilibrium is U=ΔE-δU, i.e., barrier hight is lower, by δU15 meV, than subband 
energy splitting of ΔE. Here the barrier hight U=UU=UL is measured from electrochemical potential of 
upper or lower QW, ζ=ζL=ζU. 
 
 

 
 

Fig. 6. Energy diagram illustrating photo-saturation. Upper diagram: the chemical potential of two QWs. 
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Under illumination, the energy of the floating upper QW with p photoholes decreases against the 
grounded lower QW by ΔU= |ζL-ζU| = pe2d / κLW, where d is the distance between the upper and the 
lower QWs, and κ=12  (8.8510-12) F/m is the electronic permittivity of the crystal. The net potential 
barrier height measured from ζL ,then decreases to be UL= (ΔE-δE)-ΔU by p photoholes, while  
UU =ΔE-δE remains constant [24, 31]. The barrier reduction assists the electrons in the lower QW to 
recombine with photoholes in the upper QW. The photo-current saturation occurs when the 
recombination process becomes equivalent to the photohole generation process. Obviously, more 
electrons in the lower QW contribute to the recombination process at higher temperature. Finally at 
around T=30 K, the number of traveling electron across the barrier exceeds that of photo-emitted 
electrons even with no band-deformation. 
 
The number of photoholes is determined by a rate equation [28]: 
 
  LU nn

p

dt

dp
 


 , (2)

 
where τ is the lifetime of photholes. The recombination rate, p/, is the given by difference between the 
rate from the upper QW to the lower QW, nU, and the rate of the opposite flow, nL. The thermionic 
electron emission rate from each QW [28] is given by n=(LW/d)D∫(vΘf)dE, where D=m*/πħ2 is the 
two-dimensional density of states with m*=0.0665  (9.1  10-31) kg the effective mass of conduction 
electrons in GaAs, and v=(2E/m*)1/2 the electron velocity with energy E measured from each ζ, Θ is the 
transmission probability, and f= [1+exp(E/kBT)]-1 is the Fermi distribution function with kB the 
Boltzmann constant. Equations (1) and (2) can be used to derive lifetime and whole shape of time traces 
as demonstrated in [28]. Here we derive an expression of temperature limit as a function of subbband 
energy. 
 
At the temperature limit, Tlim, (2) becomes 2ηΦ=nL ,by assuming ηΦnU under dp/dt=0 and ΔU=0. The 
relationship between subband energy the ΔE and temperature limit Tlim can be obtained: 
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where v=(2EF/m*)1/2 is Fermi velocity. Here, integration is made only for E > U with Θ=1 and  
f exp(-E/kBT), i.e., only thermionic emission is considered. Since contribution of Tlim in the logarithm is 
not significant, the temperature limit shows almost linear dependence on the subband energy with 
quasi-constant γ >0. For the λ=15 μm, the parameter values yields Tlim =29 K, which is close to the 
experimentally observed limit temperature. 
 
 
5. Wavelength Range Expansion 
 
The detection wavelength is controlled by using different thickness of upper QW layer. Detection of  
30 μm wavelength radiation has successfully realized without difficulty as shown in Fig. 7. It is also 
possible in principle to detect radiation of longer wavelength λ >40 μm and shorter wavelength λ <8 μm. 
Both direction of wavelength expansion, however, may require higher-level crystal growth technology. 
In case of λ >40 μm, much lower triangular barrier should be used (U<31 meV), and therefore higher 
quality of crystal is needed to avoid impurity-oriented potential fluctuation. In case of λ <10 μm, better 
interface morphology, as well as high quality, is required to form reliable narrow QW (<7 nm) with 
sufficient electron density. Our recent results for 45 μm will be published elsewhere. Realization of 
CSIP’s detection scheme with different material system, as well as with modified band profiles, or with 
different excitation mechanism, may be promising for wider wavelength-range expansion. 
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Fig. 7. Spectrogram for a CSIP with a 17 nm-thick upper QW. 
 
 

Optimization of photo-coupler, the key component determining quantum efficiency, is also important 
for designing a CSIP for a given target wavelength. Since a CSIP has only one QW for detection which 
lies at a depth of 100 nm beneath the surface, the photo-coupler geometries used in QWIPs , in which 
more than 30 QW layers lie in a depth of 0.5-2 μm, cannot be directly applied to CSIPs. Recently we 
proposed and demonstrated efficient photo-couplers for CSIPs (λ=15 μm) by exploiting 
surface-plasmon-polariton (SPP) resonance occurring in aperture metal sheets coated on top of the 
crystal surface (Fig. 8 (a)) [29]. The SPP resonance induces wavelength-selective strong electric 
confined near the surface of the metal sheets intensifying the subband transition in the QW 100 nm 
below the surface. After checking the detection wavelength by monochlometer, CSIPs with different 
coupler were examined under well controlled blackbody emitter (Fig. 2 (b)). Cross-shaped hole arrays, 
as shown in Fig. (2c), yield the highest efficiency of η=7 %, which is by a factor four higher than that of 
the square-metal-pad arrays. 
 
By matching two resonance system (coupler and subband in a QW), one can design a CSIP for target 
wavelength. Development of multi-color CSIPs will be one of the interesting and fruitful works in the 
future. 
 
 
6. Conclusion 
 
We developed novel ultrasensitive detectors in a wavelength range of 5-50 μm. To our knowledge, 
single-photon detection is first achieved in this range. The accurately determined figures of merit are a 
few order magnitudes superior to other detectors. CSIPs are featured by not only ultra-high sensitivity, 
but also by versatile applicability due to higher temperature operation as well as extremely wide 
dynamic range. The simple planar structure is feasible for array fabrication including future monolithic 
integration with reading circuit. 
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Fig. 8. (a) Schematic representation of the photo coupler; (b) Experimental setup by quantum efficiency; 
(c) Metal mesh couplers. The period is marked in each micrograph. The scale bar indicates 10 μm.  
Numbers below each structure are the experimentally derived values of the quantum efficiency η. 
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