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Abstract: Novel adaptive algorithms and practical examples of its realizations in various self-adaptive 
smart sensors and sensor systems with parametric adaptation are described in this article. The adaptive 
algorithms are based on novel methods of measurements such as modified method of the dependent 
count with programmable relative error and non-redundant time of measurement, and the method with 
non-redundant reference frequency. Equations of measurements for these methods are given and 
decision rules formulated. Some practical examples of self-adaptive smart sensor systems based on the 
Universal Frequency-to-Digital Converter (UFDC), Universal Sensors and Transducers Interface 
(USTI) integrated circuits, and ultra-low-power microcontroller are described in the paper.  
Copyright © 2008 IFSA. 
 
Keywords: Self-adaptive smart sensors; Adaptive algorithm; Sensor systems; Universal-frequency-to-
digital converter; UFDC-1; Universal sensors and transducers interface; USTI; Parametric adaptation 
 
 
 
1. Introduction 
 
According to Frost & Sullivan the forecast for North American smart sensors market is to reach $635.2 
million in 2010 [1]. Strong growth expected for sensors based on MEMS-technologies, smart sensors 
and sensors with bus capabilities. Smart sensors’ capability to have more intelligence built into them 
continues to drive their application in automotive, aerospace and defense, industrial, medical, and – 
most recently – homeland security applications [2]. Proprietary algorithms customized for specific 
applications analyze sensor data on key parameters to optimize machining, processing, and other 
component product or process quality. 
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Modern definition of smart or intelligent sensors based on two definitions given in [3] and [4] can be 
formulated now by the following way: ‘Smart sensor is an electronic device, including sensing 
element, interfacing, signal processing and one- or several intelligence functions as self-testing, self-
identification, self-validation or self-adaptation’. The key word in this definition is “intelligence”. 
 
The self-identification function is closely connected to conception that is used in the IEEE 1451 
standards family on smart transducer interface [5]. Self-testing, self-identification and self-validation 
functions mean a wide spectrum of different tasks from cable connection checking to self-calibration, 
metrology performance checking and monitoring, and conception, which is used in so-called soft 
sensors [6]. 
 
The self-adaptation is relatively new function of smart sensors. Novel designed self-adaptation smart 
sensor systems are based on so-called adaptive algorithms, which were used at the fist time in various 
digital measuring systems. Let consider such smart sensors systems and its algorithms below in details. 
 
 
2. Adaptive Algorithms and Parametric Adaptation 
 
Adaptive measurements are measurements in which measuring procedures can be changed at change 
of properties of a signal or measuring conditions [7]. An adaptation in smart sensors and sensor 
systems can be used for increasing of measurement accuracy, decreasing of measuring time, power 
consumption reduction, etc. A typical task of algorithmic adaptation is a control of inclusion in the 
measuring procedure of operations for increase of accuracy (improvement of metrological 
performance) at appropriate alterations of measuring conditions or properties of measurand. The 
necessity to control of operation usage for increase accuracy is caused by an opportunity of occurrence 
of situations when the application of this operation is inexpedient. 
 
There are parametrical and algorithmic adaptations. The adaptation in smart sensors and sensor 
systems can be determined as a process of purposeful change of system's parameters, which means the 
determination of criterion of functioning and its fulfillment. If an overall performance of system to 
estimate by means of criterion of optimality, the adaptation will be a process to change of parameters 
by means of control influences on the basis of the current information with the purpose to achieve the 
optimal or required state of sensor system, according to a measuring algorithm at operating conditions 
changing. Hence, the process of adaptation consists in maintenance of the required (specified) quality 
of functional for a sensor system at change of operating factor U [8]: 
 
 ,iYU ∈  (1)
 
where Yi is the ith number of feasible controls. 
 

In the case of parametrical adaptation 
 
 ,,...,, 21 〉〈= nPPPU  (2)
 
where Pn are parameters of adaptation. 
 
Parametrical adaptation consists in production of control signals supporting a smart sensor or sensor 
system in the required state by means of adopted parameters depending on measuring conditions 
and/or measuring algorithm. Here the parameter has а final number of values [8]: 
 
 ii DYU =∈ , (3)



Sensors & Transducers Journal, Vol.94, Issue 7, July 2008, pp.1-14 

 3

where Di is the discrete number of control values. 
 
Naturally, self-adaptive smart sensors systems should be based on novel methods of measurements and 
use of quasi-digital sensors (or sensing elements) with frequency, period, duty-cycle or PWM outputs 
[9]. First of all it means a novel patented modified method of the dependent count [10] with 
programmable relative error and non-redundant time of measurement, and method with non-redundant 
reference frequency and programmable relative error [11]. Both methods have so-called self-adaptive 
possibilities for change accuracy on speed of measurement, and accuracy on power consumption due 
to non-redundant time of measurement and non-redundant reference frequency respectively. 
 
Being based on the approach described in [7] we shall result the equation of measurements for 
modified method of the dependent count in the operator form (for two possible algorithms of 
measurements: with maximal accuracy and maximal speed of measurement): 
 
 ( ) ( )tLtLT jsjsj γδγλ ∨=* , (4)
 
where Ts and δs are operations of increase of speed and accuracy respectively, the introduction of 
which is made according to the established decision rule; L is the operator representing an algorithm of 
measurement; γj is the multivariate input action, generally, time-dependent [12, 13]. At ordinary direct 
measurements the input action correlated with that moment of time for which the result of 
measurement is fixed is used; t ∈ [tj, tj+T], where T is the time of measurement cycle. 
 
In turn, the equation of measurements for the method with non-redundant reference frequency in the 
operator form (at presence of two possible algorithms of measurements: with maximal accuracy and 
minimal power consumption) can be written by the following way: 
 
 ( ) ( )tLtLP jsjsj γδγλ ∨=* , (5)
 
where Ps is the operation of power consumption reduction. 
 
The choice of variants is made according to the current result of measurement β. So, for the modified 
method of the dependent count: 
 
 ( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

∉=

∈=

fxjsj

fxjsj

IFiftL

IFiftLT
**

**

,

,

βγδλ

βγλ
 at II f ∈ , (6)

 
where Fx(β*) is the characteristic of input action or measuring conditions, which value defines the 
decision for change of measuring algorithm (parameters of system); If is the subset of certain area I of 
possible values of characteristic Fx (β*), the set membership to which defines the necessity to change 
of system's parameters. Generally, the task of determination of area If for the resulted parameter arises. 
 
In turn, for the method with non-redundant reference frequency we will have: 
  
 ( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

∉=

∈=

fxjsj

fxjsj

IFiftL

IFiftLP
**

**

,

,

βγδλ

βγλ
 at II f ∈ , (7)

 
The decision about inclusion in the measuring procedure of operation of accuracy or speed increase; or 
accuracy increase or decrease power consumption, is accepted on the basis of the set-up decision rule. 
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The decision rule is built on the basis of comparison of value of measuring results with the liminal 
value set in advance at which there is a change of system's parameters depending on the required 
measuring algorithm. 
 
The common flowchart of adaptive measurement algorithm for smart sensor system based on the modified 
method of the dependent count at presence of two possible algorithms with parametrical adaptation is 
shown in Fig. 1. 

The algorithm of adaptive measurement is realized 
by the following way. At the beginning, the 
boundary value of frequency Fx limit is set-up at 
which the algorithm change should be made  
(Block 1). The subset If consists of only one value of 
boundary frequency belonging to the set I of all 
values of frequencies from the frequency measuring 
range. Then the programming of maximal accuracy 
for sensor system by means of the corresponding 
parameter is carried out (Block 2). After, the 
frequency measurement and reading of result of 
measurement Fx (Block 3) is carried out, which is 
compared to the boundary value Fx limit (Block 4). If 
the result of current measurement does not exceed 
the set-up in advance the boundary value Fx limit, the 
measurement is proceed with the greatest possible 
accuracy (Block 3). Otherwise, the exchange of 
accuracy on speed (execution of operation for 
increase of speed due to accuracy decrease) should 
be made (Block 5), and system continues to 
function with the maximal speed, but with the 
lowered accuracy of measurements  
(Block 6), whether the checking measured 
parameter has returned to admissible limits  
(Block 7). In case Fx ≤  Fx limit, the measuring system 
returns back again in the mode of measurement with 
the increased accuracy by reprogramming (set up) 
of required error of measurement (Block 2). 
 
The flowchart for adaptive measuring algorithm 
based on the method with non-redundant reference 
frequency is quite similar to the described above 
except that instead of operation of increase of speed, 
the operation of power consumption decrease Ps is 
used. Here, depending on the measuring algorithm, 
this operation can be carried out at the beginning, 
and then, if it is necessary to make one precise 
measurement, the exchange of power consumption 

on speed by increase (programming) reference frequency of system f0 should be carry out. In this case, 
the subset If can contain one as well as some values of boundary frequencies belonging to the set I of 
all values of frequencies from the frequency measuring range for which it is necessary to carry out 
measurements with the increased accuracy, and values of time intervals or numbers of measurements 
when such measurements are necessary. For example, sometimes according to the measuring 
algorithm it is necessary to receive a value of measurand with the increased accuracy once per minute, 
or each tenth measurement should be made with the increased accuracy. 

 
 

Fig. 1. Flowchart of adaptive measurement 
algorithm for smart sensor system based on the 
modified method of the dependent count. 
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3. Examples of Self-Adaptive Smart Sensors Systems and Its Realizations 
 
Let's consider some examples of sensors systems where adaptive measurements are necessary, for 
example, antilock braking system (ABS) for automobiles; pressure sensor system for gas pipelines; 
sensors systems based on different sensing elements, having a various error of measurement in 
different parts of a measuring range; and sensor system for fail-safe cooling with fan speed control 
based on current temperature measurements. 
 
 
3.1. Self-Adaptive Antilock Braking System (ABS) 
 
According to the self-adaptive ABS algorithm based on the modified method of the dependent count 
for rotation speed, at the beginning, the critical value of rotation speed for wheels at its blocking is set-
up. When wheels are not blocked, the measurement of rotation speed is made with the maximal 
accuracy with the aim to receive information for engine, gear set and other car’s systems optimization. 
At the moment when wheels are blocked, the sensor system is adopted for the changed measuring 
conditions by an exchange of accuracy on speed with the aim to receive information necessary for 
wheels unblocking and the prompt generating of corresponding control signals. At the moment when 
wheels are unblocked again and rotation speed of wheels lays outside of critical values, the sensor 
system adapts again for measurement of rotation speed with the increased accuracy by reprogramming 
the required relative error for rotation speed - to - digital conversion. 
 
Naturally, the use of such adaptive algorithms means the presence of computing power 
(microcontroller or embedded computer) in a sensor system. However, especially developed for such 
self-adaptive sensors systems the Universal Frequency-to-Digital Converters (UFDC-1, UFDC-1M-16, 
UFDC-2) [14-17] and Universal Sensors and Transducers Interfaces (USTI, USTI_1M-20) [18] 
integrated circuits essentially simplify realization of such smart sensors and sensor systems at minimal 
possible hardware and low cost. 
 
All ICs are based on the modified method of the dependent count, working in a broad frequency range 
from 0.05 Hz to 7.5 MHz (9 MHz for UFDC-2 and USTI) without prescalling, have constant 
programmable relative error from 1 to 0.001 % (0.0005 % for UFDC-2 and USTI) in all frequency 
range and non-redundant conversion time. These ICs are ideally suited for rotation speed 
measurements. They can measure a rotation speed and indicate the results in rpm units. The number of 
gear teeth Z (1…255) must be set up in advance [19]. Any rotation speed sensor with frequency output 
can be connected directly to the UFDC or USTI. 
 
Relative errors and appropriate conversion times for the mentioned ICs are shown in Table 1 and  
Fig. 2. Based on an appropriate adaptive measuring algorithm, a trade-off between required relative 
error and time for rotation speed-to-digital conversion or frequency (period)-to-digital conversion can 
be chosen. 
 
A self-adaptive smart sensor system for rotation speed based on the mentioned ICs should contain an 
appropriate frequency output sensor for rotation speed, for example [20]. A smart sensor system 
example is shown in Fig. 3. Any from UFDC or USTI ICs have three popular sensor systems 
interfaces such as SPI, I2C and RS-232, and can be controlled by an external microcontroller or 
computer (slave communication mode). 
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Table 1. Relative errors and appropriate conversion times. 

 
UFDC-1 

(at f0=500 kHz) 
UFDC-1M-16 
(at f0=16 MHz) 

USTI, UFDC-2 
(at f0=625 kHz) 

USTI-1M-20 
(at f0=20 MHz) Relative error, 

δx % 
tconv, s 

1 0.0002 0.00000625 0.00016 0.000005 
0.5 0.0004 0.0000125 0.00032 0.00001 
0.25 0.0008 0.000025 0.00064 0.00002 
0.1 0.002 0.0000625 0.0016 0.00005 
0.05 0.004 0.00125 0.0032 0.0001 
0.025 0.008 0.0025 0.0064 0.0002 
0.01 0.02 0.00625 0.016 0.0005 
0.005 0.04 0.0125 0.032 0.001 
0.0025 0.08 0.025 0.064 0.002 
0.001 0.2 0.0625 0.16 0.005 
0.0005 - - 0.32 0.01 

 
 
 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,0005 0,001 0,0025 0,005 0,01 0,025 0,05 0,1 0,25 0,5 1

Relative error, %

t, s UFDC-1
UFDC-1M-16
USTI, UFDC-2
USTI - 1M-20

 
Fig. 2. Conversion times vs. relative error. 

 
 
 

 
 

Fig.  3. Block diagram of self-adaptive smart sensor system based on UFDC or USTI integrated circuit 
(S - frequency (period) output sensor). 
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A microcontroller or computer can change accuracy or conversion time by sending an appropriate 
command to the UFDC or USTI based on the current measurement result and measuring algorithm. An 
example of such commands for RS-232 communication mode is shown in Fig. 4. 
 
 
>M0A; Rotation speed measurement initialization in the 1st channel 
>Z30; Set up the modulation rotor teeth number Z=48(10)=30(16) 
>A09; Choose the relative error of frequency measurement 0.0005 % 
>S; Start a measurement 
>R; Read a result of measurement in rpm 
    
; Here microcontroller or computer should check the condition for an algorithm changing and prepare 

the USTI to measure with highest speed (maximum relative error) if a critical rotation speed has 
been achieved: 

 
>A00; Choose the relative error of measurement 1 % 
>S; Start a measurement 
>R; Read a result of measurement in rpm 

 
Fig. 4. Commands for RS-232 communication mode at adaptive rotation speed measurements by the USTI. 

 
 
It is also expediently to use the additional command “C” between “S” and “R” commands to check the 
measurement status especially at near zero rotation speed. It returns “r” if the result is ready and “b” if 
the measurement is in a progress. 
 
The described above low cost, smart adaptive sensor system lets choose the minimum possible 
conversion time at critical rotation speed of wheels and maximum possible accuracy for the best 
engine optimization at nominal rotation speed of wheels. 
 
 
3.2. Self-Adaptive Smart Pressure Sensor System for Gas Pipeline 
 
The UFDC and USTI integrated converters works well with all frequency ranges of modern quasi-
digital pressure sensors and transducers [21]. The ICs based sensor systems are extremely cost-
effective. The level of sensor intelligence that can be obtained for only a few percents of the total cost 
has made the UFDC-1 or USTI the element of choice for MEMS based pressure sensors and 
transducers. The UFDC-1 interfacing with various quasi-digital pressure sensors is described in [22]. 
The self-adaptive smart sensor system block diagram is the same as adduced in Fig.3. Two frequency 
output sensors can be connected to each of ICs.  
 
At quick pressure drop and achievements of critical values of pressure in a gas pipeline, the smart 
adaptive pressure sensor system automatically increases a relative error of measurement of frequency 
in UFDC-1 or USTI, providing with that a high speed and reaction of sensor system for monitoring of 
current situation and produce appropriate control signals. At the returning of values of pressure in a 
nominal range, the accuracy of sensor system is increased up to the level, at which it is possible to 
neglect this error in comparison with a relative error of pressure sensor. 
 
The commands for RS-232 communication mode at adaptive measurement of pressure by the UFDC-1 
are shown in Figure 5. 
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>M0; Frequency measurement initialization in the 1st channel 
>A9; Choose the relative error of frequency measurement 0.001 % 
>S; Start a measurement 
>R; Read a result of measurement 
    
; Here microcontroller or computer should check the condition for an algorithm changing and prepare 

the UFDC-1 to measure with highest speed (maximum relative error) if a critical value of pressure 
has been reached: 

 
>A0; Choose the relative error of measurement 1 % 
>S; Start a measurement 
>R; Read a result of measurement 

 
Fig. 5. Commands for RS-232 communication mode at adaptive measurement of pressure by the UFDC-1. 

 
 
Thus, the parametrical adaptation allows to reduce the measuring time for the UFDC-1 in 3 orders, and 
in view of communication and calculation times [16], the frequency-to-digital conversion time can be 
reduced in 23 times in average for critical values of pressure. 
 
 
3.3. Temperature and Humidity Self-Adaptive Smart Sensors Systems 
 
Various quasi-digital sensors, for example, temperature and humidity sensors with frequency (period) 
outputs have different errors in various parts of measuring range [23, 24]. For example, temperature 
sensors with period (MAX6576) and frequency (MAX6577) output from Maxim have error, which is 
changed in different part of working temperature range (- 400C to + 1250C) in 2.2 times [25]. The 
temperature and humidity module HTF3130 from Humirel with frequency output proportional to a 
relative humidity has an error that is changed in 1.7 times in the whole working range (from 0 to  
99 % RH) [26]. The interfacing of such sensors with the UFDC-1 is described in [27, 28]. 
 
Based on sensors systems design considerations, in order to be neglected, the relative error of 
frequency (period) – to – digital conversion should be chosen in one order (or at the least in 3 times) 
less than the relative error of sensor. For example, in the case of maximum possible 5 % full scale 
relative error for HTF3130 humidity module, the programmable relative error for UFDC-1 should be 
chosen equal to 0.5 %. But from 0 to 10 % RH and from 90 to 100 RH % the module has maximum 
error only 3 %. It means 0.25 % programmable relative error for the UFDC-1. If we use this relative 
error for all humidity range (0 – 90 % RH), the time for frequency measurement in such sensor system 
will be redundant at the beginning (0 – 10 % RH) and at the end (90 – 100 % RH) of this range.  
 
Based on the parametric adaptation, it is possible to reduce the conversion time in a self-adaptive smart 
humidity sensor system. In this case, the programmable relative error for frequency-to-digital 
conversion should be changed dependent on the current measuring range of humidity. According to 
considerations about the parametric adaptation described above, the lowest and highest parts of 
working measuring range (0 – 10 % RH) and (90 – 100 % RH) will represent the subset If of I set of all 
possible values (0 – 90 % RH) of characteristic Fx(β*). The commands for RS-232 communication 
mode at adaptive measurement of humidity by the UFDC-1 are shown in Fig. 6. At this, the total 
conversion time in view of communication and calculation times will be decreased on 0.5 ms. 
Obviously, if the range of sensor’s error is changing in wide limits, the effect of measurement time 
reduction will be greater. 
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>M0; Frequency measurement initialization in the 1st channel 
>A2; Choose the relative error of frequency measurement 0.25 % 
>S; Start a measurement 
>R; Read a result of measurement 
    
; Here microcontroller or computer should check the condition for an algorithm changing and prepare 

the UFDC-1 to measure frequency with 0.5 % relative error if a value of humidity is in the 0 – 10 % 
RH or 90-100 % RH relative humidity range. 

 
>A1; Choose the relative error of measurement 0.5 % 
>S; Start a measurement 
>R; Read a result of measurement 

 
Fig. 6. Commands for RS-232 communication mode at adaptive measurement of humidity by the UFDC-1. 

 
 
3.4 Self-Adaptive Smart Sensor System for Fail-Safe Cooling with Fan Speed Control 
 
In various fail-safe cooling systems the UFDC and USTI integrated circuits families can be used for 
low-cost realization of adaptive temperature and fan rotation speed measurements. For example, any 
frequency output rotation speed sensor can be connected to the 1st channel of USTI and temperature 
sensor with frequency, period, duty-cycle or PWM output – to the 2nd channel of IC. 
 
At the optimal conditions, the relative errors for each of channel  should be chosen (programmed) in 
one order less then the sensors’ relative errors. In critical conditions, for example, increased 
temperature or sudden decreasing of fan rotation speed (this can be an evidence of fan fail), the self-
adaptive sensors system will automatically to decrease time of rotation speed and/or temperature 
measurement due to temporary accuracy reduction in appropriate channel in order to produce 
appropriate control signals as soon as possible by controller (master). The master initiates 
communication with the USTI (slave) according to I2C, SPI and RS-232 serial interfaces in order to 
send appropriate commands, read results and produce control signals. All these make such sensors 
systems ideal for intelligent fan control in a wide range of cooling applications with fan failure 
detection in communication, networking, high-end consumer and test equipments. 
 
 
4. Self-Adaptive Sensors Systems Based on the Method of Measurement  

with Non-redundant Reference Frequency 
 
Main applications for the frequency-to-digital converters based on the method with non-redundant 
reference frequency are different self-adaptive autonomous, embedded and wireless sensors and sensor 
systems, where power consumption is a critical parameter. In such systems, the reference frequency f0 
for a frequency-to-digital conversion can be increased for a short time in order to obtain a precision 
measurement, and then it can be reduced to the minimum possible for power saving and indicating 
rough results of measurements. 
 
The dynamic average power of a CMOS circuit can be given as 
 
 

clkDDeffavr fVCP ⋅⋅= 2 , (8)
 
where VDD is the supply voltage; fclc is the clock frequency; Ceff is the effective capacitance of the 
circuit. The VDD and Ceff are constant for the specific integrated circuit and technology. For many smart 
sensor systems the VDD can be reduced up to 2.8 - 3.5 V. The power consumption is directly 
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proportional to the system clock. If clock speed doubles, the current doubles. Obviously, power can be 
saved by operating the device at the lowest possible clock speed [4]. 
 
Self-adaptive sensor systems with low power consumption can be easy realized on ultra-low-power 
microcontrollers with programmable clock frequency, for example, MSP430 microcontroller family 
form Texas Instruments [29]. These microcontrollers have multiple oscillators driven directly from a 
common 32 kHz watch crystal. The system clock frequency fsystem in MSP430 microcontroller family 
can be calculated as: 

 
 

crystalNsystem fkf ⋅= , (9)
 

where kN (3÷127) is the multiplication factor; fcrystal is the frequency of crystal (normally 
32 768 Hz). The normal way to change the system clock frequency is to change the multiplication 
factor N. The System Clock Frequency Control register SCFQCTL should be loaded with (kN-1) to get 
the new frequency. 
 
An example of self-adaptive smart sensor systems based on MSP430, which realize the frequency-to-
digital conversion according to the method with non-redundant reference frequency is shown in  
Fig. 7. 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 7. Block diagram of self-adaptive smart sensor system 
based on MSP430 microcontroller. 

 
 
Any quasi-digital sensors with frequency (period), duty-cycle, PWM, time interval, phase shift or 
pulse number output [30] can be directly interfaced to the any microcontroller’s eight inputs of Port0 
and counted via interrupt. If frequencies to be measured are above 30 kHz then the Universal 
Timer/Port or the 8-bit Interval Timer/Counter may be also used for counting. The first reference gate 
time according to the method with non-redundant reference frequency is formed by the Basic Timer. 
 
The signal to be converted is connected to one of eight inputs of Port0. Each one of these I/Os allows 
interrupt on the trailing and on the leading edge. With the Basic Timer an appropriate timing is 
selected for the needed resolution and the conversion made. The Universal Timer/Port may be used for 
this purpose too: the pulse to be measured is connected to pin CIN and the time measured from edge to 
edge. Even better resolution is possible with the Timer_A. The input signal is connected to one of the 
TA-inputs and Capture Register is used for the time measurements. 
 
In spite of the fact that as a rule, the timer functions independently of central processor core CPU, the 
speed of timer is based on the clock frequency of microcontroller CLCOUT. The current consumed by 
the timer depends on its activity. If timer is overloaded frequently, it consumes more energy. 
 

S 

MSP430 

Xin  Xout 

P0.x to PC 
fx µC 

Smart Sensor 
System 

32 768 HzZQ1
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4.1 Modeling Results 
 
The relative quantization error for the method with non-redundant reference frequency [11] can be 
determined according to the following equation: 
 
 

%,1001
×

⋅
=

oio
qx fTi

δ , (10)

 
where T0 is the fist reference gate time; f0i is the programmable reference frequency. 
 
Having determined the clock frequency from the equation (10) and substituted it in the equation (8) we 
shall receive the formula, suitable for the power consumption modeling in CMOS ICs: 
 

 .100V

0

2
DD

T
CP

gi
avg ⋅

⋅⋅
=

δ
 (11)

 
With the aim to scope of wider nomenclature of various sensors, the following ranges of change for 
variables have been chosen at modeling: average capacity С=70 pF; supply voltage VDD = 2.2 V; the 
first gate time T0 ∈ [0.01 ÷ 10] s; quantization error δg ∈ [10-5 ÷ 0.1] %. The modeling results for 
dependence Pavg = f (T0, δ) are shown in Fig. 8. 
 
 

a) b) 

Fig.8. Modeling results for Pavg = f (T0, δ) at: (a) C = 70 pF, δg ∈[10-5÷10-4] % and T0∈[0.01÷0.1] s; 
(b) C = 70 pF, δg∈[10-5÷10-3] % and T0∈[0.01 ÷ 1] s. 

 
 
As it is visible from the charts, the power consumption can be in two orders higher, in case of 
precision frequency-to-digital conversion with the quantization relative error 0.00001 % at the gate 
time less, than 0.04 s. With increasing of the first gate time, the power consumption can be reduced at 
the same quantization error. Thus, due to adaptive features of the method with non-redundant reference 
frequency, the parametrical adaptation of measuring according to two parameters is possible: to the 
gate time (directly influences on the measuring time) and quantization error. From the point of view of 
reduction of power consumption at the use of the given method, the gate time should be chosen greater 
as it is possible. So, for example, at the use of inert sensitive elements with big time constants for 
measurement of slowly varying values, for example, temperatures, the first gate time can be chosen 
equals to 0.5 s. If according to measuring conditions the high accuracy is not required, the reference 
frequency also can be automatically reduced. Such adaptive measuring procedure allows to reduce 
essentially (by some orders) the power consumption in self-adaptive smart sensors and sensor systems. 

δ, % T0, s 

Pavg 

δ, % T0, s 

Pavg 
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The maximal power consumption will be only at critical measuring conditions, namely when fast and 
precise measurements are required. As a rule, in real technological processes this necessity arises 
extremely rarely, and it is connected with measurements in breakdown or critical situations. Hence, 
sensor systems can work for a long time with the minimal power consumption without deterioration of 
metrological characteristics. 
 
The chart for fclc=ϕ(T0, δ) at the same values of VDD and С is shown in Fig. 9. For comparison purpose, 
the dependence Pavg = φ(δ) for the adaptive method of measurement with the non-redundant reference 
frequency (1) and any of methods for frequency (period) measurements with the constant reference 
frequency f0 (2) at the same gate time T0 = 0.1 s are shown in Fig. 10. 
 
 

  
 

Fig.9. Dependence of fclc=ϕ(T0, δ) at VDD = 2.2 V 
and Ceff = 70 pF. 

Fig.10. Dependence of Pavg =φ (δ): (1) for the 
method with non-redundant reference frequency;  

(2) for any method with constant f0. 
 
 
Due to redundancy and constancy of reference frequency, the power consumption in the second case is 
essentially greater. The further decrease of power consumption (on 10 - 30 %) is possible at software 
level owing to the use of special measures at designing for microcontrollers' software and cores of built 
in microcontrollers used in measuring channels [31-33]. 
 
Thus, self-adaptive smart sensors and sensor systems using the method with non-redundant reference 
frequency for frequency (period)-to-digital conversion of sensor’s output signal allow to reduce the 
dynamic power consumption in one-two order due to adaptive control of reference frequency during 
measurements. 
 
 
5. Conclusions 
 
Self-adaptive smart sensors and sensor systems based on novel modified method of the dependent 
count for frequency (period)-to-digital conversion of sensor’s outputs can be easy realized on UFDC 
and USTI integrated circuits well-suited for such kind of applications. Smart sensors systems using the 
method with non-redundant reference frequency for any quasi-digital sensors can be based on modern 
ultra-low-power microcontroller with software driven system clock frequency, for example, the 
MSP430 microcontroller family from Texas Instruments. 
 
All described self-adaptive smart sensors systems are based on parametric adaptation. Simple decision 
rules lets chose one of two possible adaptive algorithms: with a high accuracy or speed of 
measurement, or with a high accuracy and low power consumption dependent on measuring algorithm. 

δ, % T0, s 
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δ, %
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The use of such sensors systems allows to change flexibly accuracy on speed and contrary when it is 
necessary to receive information about measurand in critical points, and also to reduce the power 
consumption of sensor system in the whole, using the measuring algorithm with programmable 
reference frequency in depend on the accuracy of measurement. 
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