SENSORS 6/07 TRANSDUCERS

Sensors & Transducers

Volume 80 Issue 6 June 2007

www.sensorsportal.com

ISSN 1726-5479

Editor-in-Chief: professor Sergey Y. Yurish, phone: +34 696067716, fax: +34 93 4011989, e-mail: editor@sensorsportal.com

Editors for Western Europe

Meijer, Gerard C.M., Delft University of Technology, The Netherlands Ferrari, Vitorio, Universitá di Brescia, Italy

Editors for North America

Datskos, Panos G., Oak Ridge National Laboratory, USA Fabien, J. Josse, Marquette University, USA Katz, Evgeny, Clarkson University, USA **Editor South America**

Costa-Felix, Rodrigo, Inmetro, Brazil

Editor for Eastern Europe

Sachenko, Anatoly, Ternopil State Economic University, Ukraine

Editor for Asia

Ohyama, Shinji, Tokyo Institute of Technology, Japan

Editorial Advisory Board

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia

Ahmad, Mohd Noor, Nothern University of Engineering, Malaysia Annamalai, Karthigeyan, National Institute of Advanced Industrial Science and Technology, Japan

Arcega, Francisco, University of Zaragoza, Spain

Arguel, Philippe, CNRS, France

Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea

Arndt, Michael, Robert Bosch GmbH, Germany Ascoli, Giorgio, George Mason University, USA

Atalay, Selcuk, Inonu University, Turkey

Atghiaee, Ahmad, University of Tehran, Iran

Augutis, Vygantas, Kaunas University of Technology, Lithuania

Avachit, Patil Lalchand, North Maharashtra University, India

Ayesh, Aladdin, De Montfort University, UK

Bahreyni, Behraad, University of Manitoba, Canada

Baoxian, Ye, Zhengzhou University, China

Barford, Lee, Agilent Laboratories, USA

Barlingay, Ravindra, Priyadarshini College of Engineering and Architecture, India

Basu, Sukumar, Jadavpur University, India

Beck, Stephen, University of Sheffield, UK

Ben Bouzid, Sihem, Institut National de Recherche Scientifique, Tunisia

Binnie, T. David, Napier University, UK

Bischoff, Gerlinde, Inst. Analytical Chemistry, Germany

Bodas, Dhananjay, IMTEK, Germany

Borges Carval, Nuno, Universidade de Aveiro, Portugal

Bousbia-Salah, Mounir, University of Annaba, Algeria

Bouvet, Marcel, CNRS - UPMC, France

Brudzewski, Kazimierz, Warsaw University of Technology, Poland

Cai, Chenxin, Nanjing Normal University, China

Cai, Qingyun, Hunan University, China

Campanella, Luigi, University La Sapienza, Italy

Carvalho, Vitor, Minho University, Portugal

Cecelja, Franjo, Brunel University, London, UK

Cerda Belmonte, Judith, Imperial College London, UK

Chakrabarty, Chandan Kumar, Universiti Tenaga Nasional, Malaysia

Chakravorty, Dipankar, Association for the Cultivation of Science, India

Changhai, Ru, Harbin Engineering University, China

Chaudhari, Gajanan, Shri Shivaji Science College, India

Chen, Rongshun, National Tsing Hua University, Taiwan Cheng, Kuo-Sheng, National Cheng Kung University, Taiwan

Chiriac, Horia, National Institute of Research and Development, Romania

Chowdhuri, Arijit, University of Delhi, India

Chung, Wen-Yaw, Chung Yuan Christian University, Taiwan

Corres, Jesus, Universidad Publica de Navarra, Spain

Cortes, Camilo A., Universidad de La Salle, Colombia

Courtois, Christian, Universite de Valenciennes, France

Cusano, Andrea, University of Sannio, Italy

D'Amico, Arnaldo, Università di Tor Vergata, Italy

De Stefano, Luca, Institute for Microelectronics and Microsystem, Italy

Deshmukh, Kiran, Shri Shivaji Mahavidyalaya, Barshi, India

Kang, Moonho, Sunmoon University, Korea South

Dickert, Franz L., Vienna University, Austria

Dieguez, Angel, University of Barcelona, Spain

Dimitropoulos, Panos, University of Thessaly, Greece

Ding Jian, Ning, Jiangsu University, China

Djordjevich, Alexandar, City University of Hong Kong, Hong Kong

Donato, Nicola, University of Messina, Italy

Donato, Patricio, Universidad de Mar del Plata, Argentina

Dong, Feng, Tianjin University, China

Drljaca, Predrag, Instersema Sensoric SA, Switzerland

Dubey, Venketesh, Bournemouth University, UK

Enderle, Stefan, University of Ulm and KTB mechatronics GmbH, Germany

Erdem, Gursan K. Arzum, Ege University, Turkey

Erkmen, Aydan M., Middle East Technical University, Turkey

Estelle, Patrice, Insa Rennes, France

Estrada, Horacio, University of North Carolina, USA

Faiz, Adil, INSA Lyon, France

Fericean, Sorin, Balluff GmbH, Germany

Fernandes, Joana M., University of Porto, Portugal

Francioso, Luca, CNR-IMM Institute for Microelectronics and Microsystems, Italy

Fu, Weiling, South-Western Hospital, Chongqing, China

Gaura, Elena, Coventry University, UK

Geng, Yanfeng, China University of Petroleum, China

Gole, James, Georgia Institute of Technology, USA

Gong, Hao, National University of Singapore, Singapore

Gonzalez de la Ros, Juan Jose, University of Cadiz, Spain

Granel, Annette, Goteborg University, Sweden

Graff, Mason, The University of Texas at Arlington, USA

Guan, Shan, Eastman Kodak, USA

Guillet, Bruno, University of Caen, France

Guo, Zhen, New Jersey Institute of Technology, USA

Gupta, Narendra Kumar, Napier University, UK

Hadjiloucas, Sillas, The University of Reading, UK

Hashsham, Syed, Michigan State University, USA

Hernandez, Alvaro, University of Alcala, Spain

Hernandez, Wilmar, Universidad Politecnica de Madrid, Spain

Homentcovschi, Dorel, SUNY Binghamton, USA

Horstman, Tom, U.S. Automation Group, LLC, USA

Hsiai, Tzung (John), University of Southern California, USA

Huang, Jeng-Sheng, Chung Yuan Christian University, Taiwan

Huang, Star, National Tsing Hua University, Taiwan

Huang, Wei, PSG Design Center, USA

Hui, David, University of New Orleans, USA

Jaffrezic-Renault, Nicole, Ecole Centrale de Lyon, France

Jaime Calvo-Galleg, Jaime, Universidad de Salamanca, Spain

James, Daniel, Griffith University, Australia

Janting, Jakob, DELTA Danish Electronics, Denmark

Jiang, Liudi, University of Southampton, UK

Jiao, Zheng, Shanghai University, China

John, Joachim, IMEC, Belgium Kalach, Andrew, Voronezh Institute of Ministry of Interior, Russia Kaniusas, Eugenijus, Vienna University of Technology, Austria

Katake, Anup, Texas A&M University, USA

Kausel, Wilfried, University of Music, Vienna, Austria

Kavasoglu, Nese, Mugla University, Turkey

Ke, Cathy, Tyndall National Institute, Ireland

Khan, Asif, Aligarh Muslim University, Aligarh, India

Kim, Min Young, Koh Young Technology, Inc., Korea South

Ko, Sang Choon, Electronics and Telecommunications Research Institute, Korea South

Kockar, Hakan, Balikesir University, Turkey

Kotulska, Malgorzata, Wroclaw University of Technology, Poland

Kratz, Henrik, Uppsala University, Sweden

Kumar, Arun, University of South Florida, USA

Kumar, Subodh, National Physical Laboratory, India

Kung, Chih-Hsien, Chang-Jung Christian University, Taiwan

Lacnjevac, Caslav, University of Belgrade, Serbia

Laurent, Francis, IMEC, Belgium

Lay-Ekuakille, Aime, University of Lecce, Italy

Lee, Jang Myung, Pusan National University, Korea South

Li, Genxi, Nanjing University, China

Li, Hui, Shanghai Jiaotong University, China

Li, Xian-Fang, Central South University, China

Liang, Yuanchang, University of Washington, USA

Liawruangrath, Saisunee, Chiang Mai University, Thailand

Liew, Kim Meow, City University of Hong Kong, Hong Kong

Lin, Hermann, National Kaohsiung University, Taiwan

Lin, Paul, Cleveland State University, USA

Linderholm, Pontus, EPFL - Microsystems Laboratory, Switzerland

Liu, Aihua, Michigan State University, USA

Liu Changgeng, Louisiana State University, USA

Liu, Cheng-Hsien, National Tsing Hua University, Taiwan

Liu, Songqin, Southeast University, China

Lodeiro, Carlos, Universidade NOVA de Lisboa, Portugal

Lorenzo, Maria Encarnacio, Universidad Autonoma de Madrid, Spain

Ma, Zhanfang, Northeast Normal University, China

Majstorovic, Vidosav, University of Belgrade, Serbia

Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados, Mexico

Matay, Ladislav, Slovak Academy of Sciences, Slovakia

Mathur, Prafull, National Physical Laboratory, India

Maurya, D.K., Institute of Materials Research and Engineering, Singapore

Mekid, Samir, University of Manchester, UK

Mendes, Paulo, University of Minho, Portugal

Mennell, Julie, Northumbria University, UK

Mi, Bin, Boston Scientific Corporation, USA Minas, Graca, University of Minho, Portugal

Moghavvemi, Mahmoud, University of Malaya, Malaysia

Mohammadi, Mohammad-Reza, University of Cambridge, UK

Molina Flores, Esteban, Benemirita Universidad Autonoma de Puebla, Mexico

Moradi, Majid, University of Kerman, Iran

Morello, Rosario, DIMET, University "Mediterranea" of Reggio Calabria,

Mounir, Ben Ali, University of Sousse, Tunisia

Mukhopadhyay, Subhas, Massey University, New Zealand

Neelamegam, Periasamy, Sastra Deemed University, India

Neshkova, Milka, Bulgarian Academy of Sciences, Bulgaria

Oberhammer, Joachim, Royal Institute of Technology, Sweden

Ould Lahoucin, University of Guelma, Algeria

Pamidighanta, Sayanu, Bharat Electronics Limited (BEL), India

Pan, Jisheng, Institute of Materials Research & Engineering, Singapore

Park, Joon-Shik, Korea Electronics Technology Institute, Korea South Pereira, Jose Miguel, Instituto Politecnico de Setebal, Portugal

Petsev, Dimiter, University of New Mexico, USA

Pogacnik, Lea, University of Ljubljana, Slovenia

Post, Michael, National Research Council, Canada

Prance, Robert, University of Sussex, UK Prasad, Ambika, Gulbarga University, India

Prateepasen, Asa, Kingmoungut's University of Technology, Thailand

Pullini, Daniele, Centro Ricerche FIAT, Italy

Pumera, Martin, National Institute for Materials Science, Japan

Radhakrishnan, S. National Chemical Laboratory, Pune, India

Rajanna, K., Indian Institute of Science, India

Ramadan, Qasem, Institute of Microelectronics, Singapore

Rao, Basuthkar, Tata Inst. of Fundamental Research, India

Reig, Candid, University of Valencia, Spain

Restivo, Maria Teresa, University of Porto, Portugal

Rezazadeh, Ghader, Urmia University, Iran

Robert, Michel, University Henri Poincare, France

Rodriguez, Angel, Universidad Politecnica de Cataluna, Spain

Rothberg, Steve, Loughborough University, UK

Royo, Santiago, Universitat Politecnica de Catalunya, Spain

Sadana, Ajit, University of Mississippi, USA

Sandacci, Serghei, Sensor Technology Ltd., UK

Sapozhnikova, Ksenia, D.I.Mendeleyev Institute for Metrology, Russia

Saxena, Vibha, Bhbha Atomic Research Centre, Mumbai, India

Schneider, John K., Ultra-Scan Corporation, USA

Seif, Selemani, Alabama A & M University, USA

Seifter, Achim, Los Alamos National Laboratory, USA

Shearwood, Christopher, Nanyang Technological University, Singapore

Shin, Kyuho, Samsung Advanced Institute of Technology, Korea

Shmaliv, Yuriv, Kharkiv National University of Radio Electronics, Ukraine

Silva Girao, Pedro, Technical University of Lisbon Portugal

Slomovitz, Daniel, UTE, Uruguay

Smith, Martin, Open University, UK

Soleymanpour, Ahmad, Damghan Basic Science University, Iran

Somani, Prakash R., Centre for Materials for Electronics Technology, India

Srinivas, Talabattula, Indian Institute of Science, Bangalore, India

Srivastava, Arvind K., Northwestern University

Stefan-van Staden, Raluca-Ioana, University of Pretoria, South Africa

Sumriddetchka, Sarun, National Electronics and Computer Technology Center, Thailand

Sun, Chengliang, Polytechnic University, Hong-Kong

Sun, Dongming, Jilin University, China

Sun, Junhua, Beijing University of Aeronautics and Astronautics, China

Sun, Zhiqiang, Central South University, China

Suri, C. Raman, Institute of Microbial Technology, India

Sysoev, Victor, Saratov State Technical University, Russia

Szewczyk, Roman, Industrial Research Institute for Automation and Measurement, Poland

Tan, Ooi Kiang, Nanyang Technological University, Singapore,

Tang, Dianping, Southwest University, China

Tang, Jaw-Luen, National Chung Cheng University, Taiwan

Thumbavanam Pad, Kartik, Carnegie Mellon University, USA

Tsiantos, Vassilios, Technological Educational Institute of Kaval, Greece

Tsigara, Anna, National Hellenic Research Foundation, Greece

Twomey, Karen, University College Cork, Ireland

Valente, Antonio, University, Vila Real, - U.T.A.D., Portugal Vaseashta, Ashok, Marshall University, USA

Vazques, Carmen, Carlos III University in Madrid, Spain

Vieira, Manuela, Instituto Superior de Engenharia de Lisboa, Portugal

Vigna, Benedetto, STMicroelectronics, Italy

Vrba, Radimir, Brno University of Technology, Czech Republic

Wandelt, Barbara, Technical University of Lodz, Poland

Wang, Jiangping, Xi'an Shiyou University, China Wang, Kedong, Beihang University, China

Wang, Liang, Advanced Micro Devices, USA

Wang, Mi, University of Leeds, UK

Wang, Shinn-Fwu, Ching Yun University, Taiwan

Wang, Wei-Chih, University of Washington, USA

Wang, Wensheng, University of Pennsylvania, USA

Watson, Steven, Center for NanoSpace Technologies Inc., USA

Weiping, Yan, Dalian University of Technology, China

Wells, Stephen, Southern Company Services, USA

Wolkenberg, Andrzej, Institute of Electron Technology, Poland Woods, R. Clive, Louisiana State University, USA

Wu, DerHo, National Pingtung University of Science and Technology, Taiwan

Wu, Zhaoyang, Hunan University, China

Xiu Tao, Ge, Chuzhou University, China

Xu, Tao, University of California, Irvine, USA

Yang, Dongfang, National Research Council, Canada

Yang, Wuqiang, The University of Manchester, UK

Ymeti, Aurel, University of Twente, Netherland

Yu, Haihu, Wuhan University of Technology, China

Yufera Garcia, Alberto, Seville University, Spain Zagnoni, Michele, University of Southampton, UK

Zeni, Luigi, Second University of Naples, Italy

Zhong, Haoxiang, Henan Normal University, China

Zhang, Minglong, Shanghai University, China Zhang, Qintao, University of California at Berkeley, USA

Zhang, Weiping, Shanghai Jiao Tong University, China

Zhang, Wenming, Shanghai Jiao Tong University, China

Zhou, Zhi-Gang, Tsinghua University, China

Zorzano, Luis, Universidad de La Rioja, Spain

Contents

Volume 80 Issue 6 June 2007

www.sensorsportal.com

ISSN 1726-5479

Research Articles

Transducers Sergey Y. Yurish	1225
Pulse Oximeter Fully Powered by Human Body Heat Tom Torfs, Vladimir Leonov, Ruud J.M. Vullers	1230
Nano Structure Metal Oxide Ceramic Thin Film for Detection of Trace Moisture Using CMOS Timer Debdulal Saha, Kamalendu Sengupta	1239
Further Analysis of Charge/Discharge Capacitance Measuring Circuit Used with Tomography Sensors	
Xiaohui Hu, Michael Katsouros, Wuqiang Yang, Songming Huang	1246
Interconnect-Induced Effects on High-Speed Submicron ADC and Clocking Scheme Ahmad Atghiaee, Naser Masoumi	1257
A PWM Current Amplifier with PI Closed Loop Control for Magentorheological Fluid Applications	
Qiang Liu, Nabil Gindy, Chunhua Li	1264
Infrared Tomography: Data Distribution System for Real-time Mass Flow Rate Measurement Ruzairi Abdul Rahim, Pang Jon Fea, Chan Kok San, Leong Lai Chen, Mohd Hafiz Fazalul Rahiman, Chan Kok San	1277
	1211
Fiber Optic Sensors to Monitor Structural Components Made of Composite Materials. Fiber Bragg Gratings Increase the Reliability of Future Airbus Generations Bob Grietens, Marc Voet	1289
Comparative Study of Moisture Sensing Properties of ZnO Nanomaterials Through Hydroxide Route by Mixing Dropwise and Sudden	
Richa Srivastava, B. C. Yadav, C. D. Dwivedi, Ritesh Kumar	1295

 $Authors \ are \ encouraged \ to \ submit \ article \ in \ MS \ Word \ (doc) \ and \ Acrobat \ (pdf) \ formats \ by \ e-mail: \ editor@sensorsportal.com \\ Please \ visit \ journal's \ webpage \ with \ preparation \ instructions: \ http://www.sensorsportal.com/HTML/DIGEST/Submition.htm$

Sensors & Transducers

ISSN 1726-5479 © 2007 by IFSA http://www.sensorsportal.com

High-Speed Universal Frequency-to-Digital Converter for Quasi-Digital Sensors and Transducers

Yurish S. Y.

Sensors Web Portal, Inc., Toronto, Canada E-mail: syurish@sensorsportal.com

Received: 16 March 2007 /Accepted: 19 June 2007 /Published: 25 June 2007

Abstract: New fast, accurate universal integrated frequency-to-digital converter (UFDC-1M-16) is described in the article. It is based on the novel patented modified method of the dependent count and has non-redundant conversion time from 6.25 μ s to 6.25 ms for 1 to 0.001 % relative errors respectively, comparable with conversion time for successive-approximation and Σ - Δ ADC. The IC can work with different sensors, transducers and encoders, which have frequency, period, duty-cycle, PWM, phase shift, pulse number, etc. output. *Copyright* © 2007 IFSA.

Keywords: Modified Method of the Dependent Count, Universal Frequency-to-Digital Converter, UFDC-1M-16, Quasi-Digital Sensors

1. Introduction

Many applications of quasi-digital sensors with frequency, period, duty-cycle, PWM, phase shift, time interval, pulse number, etc. outputs, measuring and data-acquisition systems for frequency-time parameters of signals require a high conversion speed for such parameters to digital. The conversion time should be commensurable with the conversion speed for modern analog-to-digital converters (ADC).

Simple pulse (direct method) or period (indirect method) counting techniques based on classical frequency-to-digital conversion methods essentially limited the conversion rate and/or dynamic range. Accuracy was decreased when conversion rate was increased. Typical accuracy at 100-300 conversions per second was 12 bits [1]. The usage of advanced methods for frequency-to-digital conversion, for example, the method of the dependent count [2-6] lets achieve a non-redundant

conversion time, suitable for many applications, however, high-speed applications such as measuring and data acquisition systems need additional measures to increase the conversion speed.

2. Advanced Method for Frequency-to-Digital Conversion

The solution of the mentioned technical problem is based on the proposed and patented advanced modified method of the dependent count for frequency-to-digital conversion and developed on its basis an integrated universal frequency-to-digital converter (UFDC-1M-16) [7].

The modified method of the dependent count like the early proposed method of the dependent count lets convert frequency f_0 : $(f_x >> f_0)$. But in comparison with the method of the dependent count, the initial stage for determination what frequency is greater $(f_x <> f_0)$ is not necessary, as well as it is not necessary to change an equation for further frequency (period) calculation.

In addition to the capability to measure frequency $f_x >> f_0$ the modified method of the dependent count has the following main advantages: constant quantization error δ_q in all frequency range (from f_{xmin} to f_{xmax}), programmable relative error δ and non-redundant conversion rate t_{conv} . The conversion rate for the modified method of the dependent count can be calculated according to the following equation:

$$\begin{cases} t_{conv} = \frac{1}{f_x} & if \quad \frac{N_{\delta}}{f_0} < T_x \\ t_{conv} = \frac{N_{\delta}}{f_0} + (0 \div T_x) & if \quad \frac{N_{\delta}}{f_0} \ge T_x \end{cases}$$
(1)

where $N_{\delta} = 1/\delta$ is the number proportional to the required programmable relative error δ ; $T_x = 1/f_x$ is the period of converted frequency.

3. High-Speed Universal Frequency-to-Digital Converter UFDC-1M-16

At the same chosen relative error, in order to reduce the conversion rate t_{conv} the reference frequency f_0 should be increased. So, in comparison with the UFDC-1 [8], which has the internal reference frequency f_0 =500 kHz, the UFDC-1M-16 has internal reference frequency f_0 =16 MHz.

A measurement time T_{meas} for the UFDC-1M-16 includes three main components: conversion rate (t_{conv}) , communication (t_{comm}) time and calculations (t_{calc}) time:

$$T_{meas} = t_{conv} + t_{comm} + t_{calc} \tag{2}$$

According to (1) the conversion rate is $t_{conv}=1/f_x$ only for the frequency range up to 160 Hz at maximum possible relative error $\delta=1$ % and 160 kHz at minimum possible relative error $\delta=0.001$ %.

The communication time for a slave communication mode (RS-232 interface) can be calculated according to the following equation:

$$t_{comm} = 10 \cdot n \cdot t_{bit}, \tag{3}$$

where t_{bit} = 1/300, 1/600, 1/1200, 1/2400, 1/4800, 1/9600, 1/14400, 1/19200, 1/28800 or 1/38400 is the time for one bit transmitting; n is the number of bytes (n=13÷24 for ASCII format).

As usually, at the right chosen of baud rate (maximum possible for a certain application) the $t_{comm} \le t_{conv}$. For example, the communication time at 38400 baud rate will be $t_{comm} = (0.0034 \div 0.00625)$ s.

The communication time for SPI interface should be calculated as:

$$t_{comm} = 8 \cdot n \cdot \frac{1}{f_{SCLK}},\tag{4}$$

where f_{SCLK} is the serial clock frequency, which should be chosen for the UFDC-1M-16 in the range from 100 to 500 kHz; $n=12\div13$ is the number of bytes. The number n is dependent on measurement result format: BCD (n=13) or binary (n=12).

The communication standard mode speed for I²C interfaces can be determined according to the following equation:

$$t_{comm} = 8 \cdot n \cdot \frac{1}{f_{SCL}},\tag{5}$$

where f_{SCL} is the serial clock frequency, which should be equals to 100 kHz for the UFDC-1M-16; $n=12\div13$ is the number of bytes for measurement result: BCD (n=13) or binary (n=12).

The calculation time depends on operands and is as usually $t_{calc} \le 4.5$ ms.

The dependence of conversion rates t_{conv} from the relative error δ for the UFDC-1 and IC UFDC-1M-16 are shown in Figure 1 (a) and (b) respectively. The two-channel UFDC-1M-16 has a wide frequency range from 1 Hz to 7.5 MHz (120 MHz with prescaling), programmable relative error from 1 to 0.001 % at appropriate conversion rate from 6.25 μ s to 6.25 ms, I²C, SPI and RS-232 communication interfaces. Due to the programmable relative error, the conversion time and accuracy can be optimized for specific applications. Relative errors and appropriate conversion times are shown in Table 1.

Fig. 1. Conversion Rate vs. Relative Error for UFDC-1 (a) and UFDC-1M-16 (b) at $N_{\delta}/f_0 \ge T_x$.

Relative error, $\delta_{\rm r}$ %	$N_{\delta} = 1/\delta_{x}$	UFDC-1 (at f ₀ =500 kHz)	UFDC-1M-16 (at f ₀ =16 MHz)
C_{x}	$1 \cdot \delta - 1 \cdot O_X$	$T_{conv.}$ s	
1	100	0.0002	0.00000625
0.5	200	0.0004	0.0000125
0.25	400	0.0008	0.000025
0.1	1000	0.002	0.0000625
0.05	2000	0.004	0.00125
0.025	4000	0.008	0.0025
0.01	10000	0.02	0.00625
0.005	20000	0.04	0.00125
0.0025	40000	0.08	0.0025

0.2

100000

Table 1. Relative errors and appropriate conversion times.

0.00625

Let's compare the conversion time of UFDC-1M-16 based on the modified method of the dependent count with conversion times, which can be achieved by using any classical or other advanced conversion methods described in [6]. For indirect counting method, with the reference frequency f_0 =16 MHz, relative error 0.001 % and conversion time that does not exceed one period T_x the frequency range will be essentially limited by \leq 160 Hz. In case of direct counting technique, for the same relative error and the gate time 6.25 ms it will be possible to convert only frequencies from the range $f_x \in$ [16 kHz \div 16 MHz] and for all relative error except $\delta_x = 0.001$ % the conversion time will be redundant. For advanced conversion methods, for example, reciprocal, ratiometric, M/T, constant elapse time, single- and double buffered, DMA [6], at the reference frequency f_0 =16 MHz and gate time T_0 = 6.25 ms the conversion time also will be redundant for all relative error from the Table 1 except $\delta_x = 0.001$ %. In other words, the conversion time will be the same - 6.25 ms for the relative error 0.001 % and relative error 1 %.

4. Conclusions

0.001

Experimental and modeling results confirm high metrological performances for novel integrated universal frequency-to-digital converter (UFDC-1M-16). Its conversion time is non-redundant, adaptive, minimum possible and in 32 times less than in the previous model of IC UFDC-1.

Due to developed modified methods of the dependent count for frequency-to-digital conversion the conversion rate (6.25 μ s to 6.25 ms) is programmable, non-redundant, shorter than for pulse counting technique and comparable with successive-approximation and Σ - Δ ADC.

The UFDC-1M-16 will be available in 28-lead Plastic Dual Inline Package (PDIP), compact 32-lead TQFP package and in a wafer form for embedded applications. The IC will be introduced to the market at the second part of 2007.

Acknowledgement

These research and development were supported by the EC Marie Curie Chair (EXC) grant in the frame of project MEXT-CT-2005-023991 SMARTSES; by International Frequency Sensor Association (IFSA), and Sensors Web Portal, Inc. (Toronto, Canada).

References

- [1]. A. Collins, Solid State Solutions for Electricity Metrology, *Metering and Tariffs for Energy Supply*, *Conference Publication*, No. 462, (1999).
- [2]. Pat. 788018 (USSR), N. V. Kirianaki., B. M. Berezyuk, Method of Measurement of Frequency and Period of Harmonic Signal and Device for its Realization, 1980.
- [3]. Kirianaki N.V., Yurish S.Y. Frequency to Code Converters Based on Method Depending on Count, in *Proceedings of XIV IMEKO World Congress*, Vol. IV B, topic 4 "2nd International Workshop on ADC Modeling and Testing", 2-3 June 1997, Tampere, FINLAND, pp.276-281.
- [4]. Kirianaki N.V., Yurish S.Y., Shpak N.O. New Processing Methods for Microcontrollers Compatible Sensors with Frequency Output, in Proceedings of the 12th European Conference on Solid-State Transducers and the 9th UK Conference on Sensors and their Applications, Southampton, UK, 13-16 September 1998, EUROSENSOR XII, Ed. by N. M. White, Institute of Physics Publishing Bristol and Philadelphia, Sensors Series, Vol. 2, pp. 883-886.
- [5]. Kirianaki N.V., Yurish S.Y., Shpak N.O. Methods of Dependent Count for Frequency Measurements, *Measurement*, Vol.29, Issue 1, January 2001, pp.31-50.
- [6]. Kirianaki N.V, S.Y. Yurish, N.O. Shpak and V.P. Deynega (2002). Data Acquisition and Signal Processing for Smart Sensors, *John Wiley & Sons*, Chichester, UK.
- [7]. Patent № a200605291, Method of Measurement for Frequency and Period of Harmonic Signal and Device for its Realization, N. V. Kirianaki, S. Y. Yurish, 15 May 2006 (patent pending).
- [8]. Universal Frequency-to-Code Converter (UFDC-1). Specification and Application Notes, October 2004 http://www.sensorsportal.com/DOWNLOADS/UFDC 1.pdf

2007 Copyright ©, International Frequency Sensor Association (IFSA). All rights reserved. (http://www.sensorsportal.com)

Universal Frequency-to-Digital Converter (UFDC-1)

- 16 measuring modes: frequency, period, its difference and ratio, duty-cycle, duty-off factor, time interval, pulse width and space, phase shift, events counting, rotation speed
- 2 channels
- Programmable accuracy up to 0.001 %
- Wide frequency range: 0.05 Hz ...7.5 MHz (120 MHz with prescaling)
- · Non-redundant conversion time
- RS-232, SPI and I²C interfaces
- Operating temperature range -40 ⁰C...+85 ⁰C

www.sensorspor.com info@sensorsportal.com SWP, Inc. Canada

Guide for Contributors

Aims and Scope

Sensors & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and application specific papers, short notes, letters to Editor and sensors related books reviews as well as academic, practical and commercial information of interest to its readership. Because it is an open access, peer review international journal, papers rapidly published in Sensors & Transducers Journal will receive a very high publicity. The journal is published monthly as twelve issues per annual by International Frequency Association (IFSA). In additional, some special sponsored and conference issues published annually.

Topics Covered

Contributions are invited on all aspects of research, development and application of the science and technology of sensors, transducers and sensor instrumentations. Topics include, but are not restricted to:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- · Sensors interfaces, buses and networks;
- Signal processing;
- Frequency (period, duty-cycle)-to-digital converters, ADC;
- · Technologies and materials;
- Nanosensors:
- · Microsystems;
- Applications.

Submission of papers

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 4-12 pages article (including abstract, illustrations (color or grayscale), photos and references) in both: MS Word (doc) and Acrobat (pdf) formats. Detailed preparation instructions, paper example and template of manuscript are available from the journal's webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors must follow the instructions strictly when submitting their manuscripts.

Advertising Information

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit: http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2007.PDF

Smart Sensors

'This book provides a good basis for anyone entering or studying the field of smart sensors not only for the inexperienced but also very useful to those with some experience'

(from IEEE Instrumentation & Measurement Magazine review)

Order online:

http://www.sensorsportal.com/HTML/BOOKSTORE/DAQ_SP.htm